
1 v ^* * ■

University

Addressing Security Challenges in Pervasive
Computing Applications

Final Technical Report

Contract No. FA9550-07-1-0042

Colorado State University

Principal Investigators

Principal Investigators

Dr. Indrakshi Ray

Dr. Indrajit Ray

The views and conclusions contained in this document are those of the authors and should not

be interpreted as representing official policies, either expressed or implied, of the U.S. Air Force

Office of Scientific Research, or the U.S. government.

Executive Summary

With the growth of mobile and sensor devices, embedded systems, and communication technolo-

gies, we are moving towards an era of pervasive computing. This project investigates some of the

security challenges of pervasive computing and suggests possible solutions.

Pervasive computing uses numerous, casually accessible, often invisible computing and sensor

devices, that are frequently mobile or embedded in the environment and that are interconnected to

each other with wired or wireless technology. Being embedded in the environment and strongly in-

terconnected, allows pervasive computing to provide novel services and functionalities that use the

knowledge of the surrounding physical spaces. However, it also brings novel security challenges

to this new paradigm that can have very serious consequences. Thus, we need to understand the

major security and privacy challenges and address these before pervasive computing technology

can be widely deployed.

Pervasive computing applications present some unique constraints that preclude the use of tra-

ditional security policies and mechanisms from protecting such applications. First, pervasive com-

puting applications typically involve many disparate entities, belonging to different organizations

and interacting in complex and subtle ways. Second, the applications are very dynamic in nature

with the entities and their interactions potentially changing at any given time. Third, pervasive

computing applications use contextual information to provide better services; such information

are often used by security mechanisms as well and, hence, must be adequately protected. Fourth,

pervasive systems often involve devices with various computation and communication capabili-

ties. Many of these are severely resource constrained, preventing execution of standard security

mechanisms on them. The objective of this work is to address some of the security challenges that

arise because of these constraints. This work focuses on four major aspects of security in pervasive

computing that we summarize below.

Policy and Trust Models for Pervasive Computing Applications

Traditional access control models, such as, Discretionary Access Control (DAC), Mandatory

Access Control, and Role-Based Access Control (RBAC), do not use contextual information,

namely, space and time, for authorization. Towards this end, we propose a number of increas-

ingly refined spatio-temporal RBAC models where the access decisions depend on the role of the

user, her location, the object's location, and the time of access. The models that we develop have

I

a very sophisticated set features that allow them to express many different spatio-temporal access

control constraints. However, they can also interact in many subtle yet complex ways. We show-

how these features can be formally analyzed to study their interactions. We propose using an au-

tomated tool called Alloy, that has embedded SAT-solvers. We have used this model to specify the

access control policies of a real-world system - the Dengue Decision Support System that has been

developed at Colorado State University. Further, to accommodate the dynamic nature of pervasive

computing applications, we propose a graph-theoretic framework to represent the spatio-temporal

access control model. This framework allows us to reason about security of the access control

configuration changes during application execution.

Pervasive computing applications involve interaction among various entities not all of which

are equally trusted. The nature of interactions between entities depend on the trust relationship

between them. Towards this end, we developed a new model of trust to characterize and quantify

these trust relationships. Our model is based on subjective logic and allows one to reason about the

uncertainty that arises in these interactions within pervasive computing applications. We demon-

strate the use of this trust model for providing trust-based access control, finding a reliable path for

propagating sensor data to processing nodes, and giving sensitive personal data to recipients over

an untrusted network.

Designing Secure Pervasive Computing Applications

Pervasive computing applications are inherently complex. They must satisfy functional and

non-functional requirements, such as, security. Security cannot be added as an afterthought but

must be addressed from the very early stages of design. We demonstrate how aspect-oriented

methodology can be used for designing secure applications. In this approach, the application is de-

composed into modules on the basis of functionality and the security mechanisms are represented

as aspects. We demonstrate how to methodically integrate the security aspects with the functional

modules resulting in a design where security requirements have been adequately addressed. Often

times, the same security requirement can be satisfied by different security solutions. The solutions

may differ with respect to the amount of protection offered, time-to-market, budget and resource

constraints. Trade-off analysis must be done to determine which solution best meets the project

goal. We propose a new approach to do trade-off analysis that uses Bayesian Belief Networks.

The Unified Modeling Language (UML) is the de facto software specification language used

in the industry. We thus use UML for specifying the application and its security constraints. The

models must be formally analyzed to provide assurance of correct behavior. Moreover, the analysis

must be automated to the extent possible so as to reduce human errors. UML does not have much

tool support for automated analysis. Towards this end, we propose a new tool and methodology

by which UML specifications can be automatically converted into Alloy. We show how the re-

sulting specification can be evaluated by the Alloy Analyzer. We also show how existing tools for

analyzing UML designs, such as, OCLE and USE, can be enhanced to support our analysis.

Security Management in Pervasive Computing Environments

Pervasive computing applications typically involve cooperation among a number of entities

spanning multiple organizations. Thus, a security breach can have very far reaching consequences.

Moreover, the resource constraints in pervasive environments preclude the use of strong security

mechanisms in such applications. Towards this end, we propose a model that can evaluate the

chances of an attack occurring. In the event that an attack caused by a malicious worm occurs,

it is important to identify the source of attack. The existing practices offending off such mali-

cious worms are all based on filtering techniques that use signatures derived from the worm code.

This may not be fast enough in a pervasive environment. We develop an automatic distributed

monitoring system to trace rapidly spreading worms back to their origins.

Pervasive computing applications typically involve information flow over a complex network

of devices. The choice of security mechanisms in pervasive environments is influenced by a num-

ber of factors, the most important among which are the heterogeneity of the computing devices,

resource constraints of these devices, the cost of deploying security mechanisms on these devices,

and the attack coverage provided by them. An optimal set of security measures is often difficult to

define because of the conflict between the level of security achievable by a mechanism and these

other factors. We investigate the problem of selecting a subset of security hardening measures so

as to be within a fixed budget and yet minimize the residual damage to the system caused by not

plugging all security holes. We refine this model to integrate the attackers perceptions about cost

to attack. In a related work, we show how workflow profiles can be used to capture the contexts

in which a communication channel can be used in a pervasive environment. We formulate a set

of constrained multi-objective optimization problems that minimize the residual damage and the

maintenance cost incurred to keep the workflow secure and running.

Controlled Data Dissemination in Pervasive Computing Environments

Pervasive computing environments involve disseminating data to various entities. We need to

limit the disclosure of sensitive data. Specifically, we would like to prevent the linking of sensitive

data to any specific individual. Thus, in the A'-anonymity privacy model, information pertaining to

an individual is often suppressed or generalized such that he cannot be distinguished from k other

individuals. Suppressing or generalizing data causes loss of information, which makes the data

less useful. We demonstrate how multi-objective optimization can be used to perform a privacy-

utility trade-off and give an insight as to whether better privacy is achievable with the same (or

nearly same) data utility. Existing privacy models, such as, ^-anonymity and /-diversity, provide

a measure of the worst-case privacy but do not capture the privacy-bias that arises because of the

anonymization. Towards this end, we propose the use of property vectors to represent privacy and

other measurable properties of an anonymization and show how different anonymizations can be

compared.

Data availability is also very important in pervasive computing environments. Data access in

a pervasive environment can often be modeled by a push-pull based broadcast architecture. In

many of these models, the timeliness of servicing the data request becomes critical. Data begin to

degrade in utility the later it is provided from a deadline. Thus proper scheduling of the data request

is critical to ensure timely availability. We investigate this problem of data broadcast scheduling in

an environment where the time criticality is specified by a soft deadline that is directly related to

the data utility. Our experiments reveal that the broadcast schedule generated using heuristics can

be improved by hybridizing them with local search techniques. Our experiments further illustrate

that an evolution strategy based search technique does even better. The work assumes that each

request sent by a client is for one data item only, and that multiple requests sent by a client are

handled independently from each other. This assumption is eliminated in our subsequent works

where each client requires an ordered set of data items, and the client can start processing as soon

as it receives the first data item but cannot complete until it gets all the requested data items. Here

again, evolution strategies are used to trade-off between the running time of the real-time scheduler

and the quality of schedules generated.

The work done as part of this project has been published in various peer-reviewed journals and

conferences. The work also resulted in 3 Ph.D. dissertations. The dissertations and papers result-

ing from this work are listed below. *e>

List of Publications

Doctoral Dissertations

1. Rinku Dewri, "Multi-criteria Analysis in Modern Information Management", Computer Sci-

ence Department, Colorado State University, Fort Collins, USA, Summer 2010.

2. Nayot Poolsappasit, "Towards an Efficient Vulnerability Analysis Methodology for Better

Security Risk Management", Computer Science Department, Colorado State University, Fort

Collins, USA, Summer 2010.

3. Manachai Toahchoodee. "Access Control Models for Pervasive Computing Environments",

Computer Science Department, Colorado State University, Fort Collins, USA. Summer 2010.

Published Papers

1. Sudip Chakraborty and Indrajit Ray, "p-Trust: A New Model of Trust to Allow Finer Control

over Privacy in Peer-to-Peer Framework", Journal of Computers, Vol 2(2), April 2007.

2. Indrakshi Ray and Manachai Toahchoodee, "A Spatio-Temporal Role-Based Access Control

Model", Proceedings of the 21st Annual IFIP WG 11.3 Working Conference on Data and

Applications Security, Redondo Beach, CA, July 2007.

3. Sudip Chakraborty, Nayot Poolsappasit and Indrajit Ray, "Reliable Delivery of Event Data

from Sensors to Actuators in Pervasive Computing Environments", Proceedings of the 21st

Annual IF IP WG I1.3 Working Conference on Data and Applications Security, Redondo

Beach, CA, July 2007.

4. Lijun Yu, Robert B. France, Indrakshi Ray and Kevin Lano, "A Light-Weight Static Ap-

proach to Analyzing UML Behavioral Properties", Proceedings of the 12th International

Conference on Engineering of Complex Computer Systems, Auckland, New Zealand, July

2007.

5. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg and Indrakshi Ray, "UML2Alloy: A

Challenging Model Transformation", Proceedings of the 10th International Conference on

Model Driven Engineering Languages and Systems, Nashville, TN, September 2007.

6. Rinku Dewri, Nayot Poolsappasit, Indrajit Ray and Darrell Whitley, "Optimal Security Hard-

ening Using Multi-objective Optimization on Attack Tree Models of Networks", Proceed-

ings of the 14th ACM Conference on Computer and Communications Security, Alexandria,

VA, October 2007.

7. Eunjee Song, Robert France, Indrakshi Ray and Hani! Kim, "Checking Policy Enforcement

in an Access Control Aspect Model". Proceedings of the International Conference on Con-

vergence Technology and Information Convergence, Anaheim, CA, November 2007.

8. Andrew Burt, Michael Darschewski, Indrajit Ray, Ramakrishna Thurimella and Hailin Wu,

"Origins: An Approach to Trace Fast Spreading Worms to Their Roots", International jour-

nal of Security and Networks, Vol. 3(1), January 2008.

9. Rinku Dewri, Indrakshi Ray, Indrajit Ray and Darrell Whitley, "Optimizing On-Demand

Data Broadcast Scheduling in Pervasive Computing Environments", Proceedings of the 11th

International Conference on Extending Database Technology, Nantes, France, March 2008.

10. Rinku Dewri, Indrajit Ray, Indrakshi Ray and Darrell Whitley, "On the Optimal Selection of

k in the K-Anonymity Problems", Proceedings of the 24th IEEE International Conference

on Data Engineering, Cancun, Mexico, April 2008.

11. Manachai Toahchoodee and Indrakshi Ray, "On the Formal Analysis of a Spatio-Temporal

Access Control Model", Proceedings of the 22ndAnnual IF IP WG 11.3 Conference on Data

and Applications Security, London, U.K., July 2008.

12. Indrajit Ray, Nayot Poolsappasit and Rinku Dewri, "An Opinion Model for Evaluating Ma-

licious Activities in Pervasive Computing Systems", Proceedings of the 22nd Annual IFIP

WG 11.3 Conference on Data and Applications Security, London, U.K., July 2008.

13. Rinku Dewri, Darrell Whitley, Indrakshi Ray and Indrajit Ray, "Evolution Strategy Based

Optimization of On-Demand Dependent Data Broadcast Scheduling". Proceedings of the

Genetic and Evolutionary Computation Conference. Atlanta, GA, July 2008.

14. Indrakshi Ray and Manachai Toahchoodee, "A Spatio-Temporal Access Control Model Sup-

porting Delegation for Pervasive Computing Applications", Proceedings of the 5th Interna-

tional Conference on Trust, Privacy, and Security in Digital Business, Turin, Italy, Septem-

ber 2008.

15. Indrakshi Ray and Wei Huang, "Increasing Expressiveness of Events using Parameter Con-

texts", Proceedings of the 12th East European Conferences on Advances in Databases and

Information Systems, Pori, Finland, September 2008.

16. Rinku Dewri, Darrell Whitley, Indrajit Ray and Indrakshi Ray, "Optimizing Real-Time Or-

dered Data Broadcasts in Pervasive Environments using Evolution Strategy", Proceedings

of the 10th International Conference on Parallel Problem Solving from Nature, Dortmund,

Germany, September 2008.

17. Lijun Yu, Robert France and Indrakshi Ray, "Scenario-based Static Analysis of UML Be-

havioral Properties", Proceedings of the ACM/IEEE 11th International Conference on Model

Driven Engineering Languages and Systems, Toulouse, France, September 2008.

18. Indrajit Ray and Sudip Chakraborty, "Facilitating Privacy Related Decisions in Different Pri-

vacy Contexts on the Internet By Evaluating Trust in Recipients of Private Data", Proceed-

ings of the 23rd IF IP TC-11 International Information Security Conference, Milan, Italy,

September 2008.

19. Dilum Bandara, Anura Jayasumana and Indrajit Ray, "Key Pre-distribution Based Secure

Backbone Design for Wireless Sensor Networks", Proceedings of the 3rd IEEE International

Workshop on Practical Issues in Building Sensor Network Applications, Montreal, Canada,

October 2008.

20. Rinku Dewri, Indrakshi Ray, Indrajit Ray and Darrell Whitley, "Security Provisioning in

Pervasive Environments using Multi-objective Optimizations", Proceedings of the 13th Eu-

ropean Symposium on Research in Computer Security, Malaga, Spain, October 2008.

21. Nayot Poolsappasit and Indrakshi Ray, "Towards Achieving Personalized Privacy for Location-

Based Services", Transactions on Data Privacy, 2(1), 2009.

22. Indrakshi Ray, Indrajit Ray and Sudip Chakraborty, "An Interoperable Context-Sensitive

Model of Trust", Journal of Intelligent Information Systems, 32(1), February 2009.

23. Rinku Dewri, Indrakshi Ray, Darrell Whitley and Indrajit Ray, "On the Comparison of Mi-

crodata Disclosure Algorithms", Proceedings of the 12th International Conference on Ex-

tending Database Technology, Saint-Petersburg, Russia, March 2009.

24. Geri Georg, Indrakshi Ray, Kyriakos Anastasakis, Behzad Bordbar, Manachai Toahchoodee

and Siv Hilde Houmb, "An Aspect-Oriented Methodology for Designing Secure Applica-

tions", Information and Software Technology - Special Issue on Model Based Development

for Secure Information Systems, 51(5), May 2009.

25. Manachai Toahchoodee, Indrakshi Ray, Kyriakos Anastasakis, Geri Georg and Behzad Bor-

dbar, "Ensuring Spatio-Temporal Access Control for Real-World Applications", Proceed-

ings of the 14 th ACM Symposium on Access Control Models and Technologies, Stresa, Italy,

June 2009.

26. Lijun Yu, Robert France, Indrakshi Ray and Sudipto Ghosh, "A Rigorous Approach to Un-

covering Security Policy Violations in UML Designs", Proceedings of the 14 th International

Conference on Engineering of Complex Computer Systems, Potsdam, Germany, June 2009.

27. Manachai Toahchoodee, Ramadan Abdunabi, Indrakshi Ray and Indrajit Ray, "A Trust-

Based Access Control Model for Pervasive Computing Systems", Proceedings of the 23rd

Annual IF IP WG 11.3 Working Conference on Data and Applications Security, Montreal,

Canada, July 2009.

28. Rinku Dewri, Darrell Whitley, Indrajit Ray and Indrakshi Ray, "A Multi-Objective Approach

to Data Sharing with Privacy Constraints and Preference Based Objectives", Proceedings of

Genetic and Evolutionary Computation Conference, Montreal, Canada, July 2009.

29. Rinku Dewri, Indrakshi Ray, Indrajit Ray and Darrell Whitley, "Multi-Objective Evolution-

ary Optimization in Statistical Disclosure Control", Advances in Artificial Intelligence for

Privacy Protection and Security, Imperial College Press, August 2009.

30. Manachai Toahchoodee and Indrakshi Ray, "Using Alloy to Analyse a Spatio-Temporal

Access Control Model Supporting Delegation", 1ET Information Security, 3(3), September

2009.

31. Manachai Toahchoodee, Xing Xie and Indrakshi Ray, "Towards Trustworthy Delegation in

Role-Based Access Control Models", Proceedings of the 12th Information Security Confer-

ence, Pisa, Italy, September 2009.

32. Rinku Dewri, Indrajit Ray, Indrakshi Ray and Darrell Whitley, "POkA: Identifying Pareto-

Optimal k-Anonymous Nodes in a Domain Hierarchy Lattice", Proceedings of the 18th ACM

Conference on Information and Knowledge Management. Hong Kong, China, November

2009.

33. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg and Indrakshi Ray, "On Challenges of

Model Transformation from UML to Alloy", Software and Systems Modeling, 9(1), January

2010.

34. Indrajit Ray, Indrakshi Ray and Sudip Chakraborty, "A Context-Aware Model of Trust for

Facilitating Secure Ad Hoc Collaborations", Trust Modeling and Management in Digital

Enviwnments: From Social Concept to System Development, IGI Global, January 2010.

35. Rinku Dewri, Indrakshi Ray, Indrajit Ray and Darrell Whitley, "Query m-Invariance: Pre-

venting Query Disclosures in Continuous Location-Based Services", Proceedings of the 11th

International Conference on Mobile Data Management, Kansas City, Missouri, May 2010.

36. Geri Georg, Kyriakos Anastasakis, Behzad Bordbar, Siv Hilde Houmb, Indrakshi Ray and

Manachai Toahchoodee, "Verification and Trade-off Analysis of Security Properties in UML

System Models", IEEE Transactions on Software Engineering, 36(3), May-June 2010.

37. Rinku Dewri, Indrajit Ray, Indrakshi Ray and Darrell Whitley, "On the Identification of

Property Based Generalizations in Microdata Anonymization", Proceedings of the 24th An-

nual IF IP WG 11.3 Working Conference on Data and Applications Security, Rome, Italy,

June 2010.

38. Siv Hilde Houmb, Sudip Chakraborty, Indrakshi Ray and Indrajit Ray, "Using Trust-Based

Information Aggregation for Predicting Security Level of Systems", Proceedings of the 24th

Annual IF IP WG 11.3 Working Conference on Data and Applications Security, Rome, Italy,

June 2010.

39. Rinku Dewri, Indrakshi Ray, Indrajit Ray and Darrell Whitley, "Real Time Stochastic Schedul-

ing in Broadcast Systems with Decentralized Data Storage", Real-Time Systems, 45(3), Au-

gust 2010.

40. Rinku Dewri, Indrakshi Ray, Indrajit Ray and Darrell Whitley, "On the Formation of His-

torically k- Anonymous Anonymity Sets in a Continuous LBS", Proceedings of the 6th In-

ternational Conference on Security and Privacy in Communication Networks, Singapore,

September 2010.

41. Rinku Dewri, Indrakshi Ray, Indrajit Ray and Darrell Whitley, "£-Anonymization in the

Presence of Publisher Preferences", To appear in IEEE Transactions on Knowledge and

Data Engineering.

8

42. Siv Hilde Houmb, Geri Georg, Dorina C. Petriu, Behzad Bordbar, Indrakshi Ray, Kyriakos

Anastasakis and Robert France, "Balancing Security and Performance Properties During

System Architectural Design", To appear in Software Engineering for Secure Systems: In-

dustrial and Research Perspectives.

43. Manachai Toahchoodee and Indrakshi Ray, "On the Formalization and Analysis of a Spatio-

Temporal Role-Based Access Control Model", To appear in Journal of Computer Security.

Publications under Review

1. Rinku Dewri, lndrajit Ray, Indrakshi Ray and Darrell Whitley, "Exploring Privacy versus

Data Utility Tradeoffs in Anonymization Techniques using Multi-objective Optimization",

Journal of Computer Security (submitted first revision).

2. Siv Hilde Houmb, Indrakshi Ray, lndrajit Ray and Sudip Chakraborty, "Trust-Based Se-

curity Level Evaluation using Bayesian Belief Networks", Transactions on Computational

Sciences Journal (submitted first revision).

3. Nayot Poolsappasit, Rinku Dewri and lndrajit Ray, "Dynamic Security Risk Assessment and

Mitigation Using Bayesian Attack Graphs", IEEE Transactions on Dependable and Secure

Computing (initial submission).

4. Rinku Dewri, lndrajit Ray, Nayot Poolsappasit and Darrell Whitley, "Optimal Security Hard-

ening on Attack Tree Models of Networks: A Cost-Benefit Analysis", International Journal

of Information Security (initial submission).

5. Rinku Dewri, lndrajit Ray, Indrakshi Ray and Darrell Whitley, "Utility Driven Optimization

of Real Time Data Broadcast Schedules", Applied Soft Computing (initial submission).

6. Manachai Toahchoodee, Indrakshi Ray and Ross McConnell, "Using Graph Theory to Rep-

resent a Spatio-Temporal Role-Based Access Control Model", International Journal of Next-

Generation Computing (initial submission).

List of Personnel

Personnel Supported by Grant
The work of the following personnel were partially supported by this grant. 1. Rinku Dewri (Stu-

dent) 2. Nayot Poolsappasit (Student) 3. Indrakshi Ray (Faculty) 4. lndrajit Ray (Faculty) 5. Man-

achai Toahchoodee (Student)

Contents

1 Introduction 13

2 Spatio-Temporal Role-Based Access Control Model 18

2.1 Our Model 19

2.2 Model Analysis 22

2.3 Conclusion and Future Work 25

3 Applying Spatio-Temporal Model to Real-World Applications 27

3.1 UML to Alloy Transformation 28

3.2 Dengue Decision Support System 29

3.3 Model Analysis 32

3.3.1 Stage 1: Model Abstraction 32

3.3.2 Stage 2: Model Transformation 32

3.3.3 Stage 3: Model Analysis 34

3.4 Conclusion and Future Work 36

4 Graph-Theoretic Representation of Spatio-Temporal Model 37

4.1 STARBACD: The Refined Spatio-Temporal Model 38

4.2 Dynamic Model 41

4.2.1 Algorithm for Detecting Isolated Entities 42

4.2.2 Algorithm for Detecting Infeasible Paths 42

4.2.3 Algorithm for Detecting SoD Violations 44

4.3 Military Example 45

4.4 Conclusion and Future Work 46

5 A Trust Model for Pervasive Computing Applications 48

5.1 Overview of Trust Model 49

5.1.1 Evaluating Experience 49

5.1.2 Evaluating Knowledge 50

5.1.3 Evaluating Recommendation 51

10

5.1.4 Normalization of Trust Vector 53

5.2 Reasoning about Trust Relationships in Different Contexts 53

5.2.1 Relationships between Contexts 55

5.2.2 Computing the Degree of Specialization and Composition 58

5.2.3 Relationships between Context Graphs 58

5.2.4 Combining Trust Vectors for Collaborations 60

5.3 Conclusions and Future Work 62

6 Risk Estimation and Security Provisioning 64

6.1 Attack Tree Model 65

6.2 Defense and Attack Strategies 67

6.3 Cost Model 69

6.4 PayoffModel 72

6.5 Conclusion 73

7 Controlled Disclosure of Location Information 75

7.1 System Architecture 76
7.1.1 Historical ^-anonymity 77

7.1.2 Implications 78

7.2 The CANON Algorithm 79

7.2.1 Handling defunct peers 80

7.2.2 Deciding a peer set 81

7.2.3 Handling a large MBR 83

7.3 Empirical Study 84

7.4 Conclusion and Future Work 86

8 Designing Secure Pervasive Computing Applications 87

8.1 Aspect-Oriented Risk-Driven Development Methodology 87

8.2 AORDD Analysis 89

8.2.1 Security Analysis 90

8.2.2 Trade-Off Analysis 91

8.3 Example E-Commerce Application 92

8.3.1 Identifying Threats to the E-Commerce Application 92

8.3.2 Incorporating Security Mechanisms in the Application 94

8.3.3 Trade-Off Analysis of the Security Mechanisms 94

8.4 Conclusion and Future Work 97

9 Conclusion 99

11

List of Figures

2.1 Counterexample for assertion TestConflict 24

3.1 Outline of the transformation method 29

3.2 UML model for DDS's access control policies 33

3.3 Counterexample for assertion NoConflictPermsSTVC 35

4.1 Access control configurations for the military example 47

5.1 Specialization and composition relationships 57

5.2 Unrelated context graphs 59

5.3 Context graphs having subsumes relation 59

5.4 Incomparable context graphs 60

6.1 Example attack tree 68

7.1 Schematic of the system architecture 76

7.2 Conventional ^-anonymity and historical ^-anonymity 77

8.1 Steps in AORDD security and trade-off analysis 90

8.2 Trade-off analysis using BBN 92

8.3 (a): Primary model, (b) and (c): generic man-in-the-middle aspect 93

8.4 (a), (b): Context-specific man-in-the-middle. (c): composed model 93

12

Chapter 1

Introduction

In order to win our nation's wars in the new millennium the U.S. Air Force plans to transform

itself into a net-centric, knowledge-based force. Pervasive computing is an emerging paradigm that

has the potential to act as an enabler for this goal. Pervasive computing uses numerous, casually

accessible, often invisible computing and sensor devices, that are frequently mobile or embedded in

the environment and that are interconnected to each other with wireless or wired technology. Being

embedded in the environment and strongly interconnected, allow pervasive computing devices to

exploit knowledge about the operating environment in a net-centric manner. Thus they provide a

rich new set of services and functionalities that are not possible through conventional means.

Although pervasive computing technology looks promising, one critical challenge needs to be

addressed before it can be widely deployed - security. The very knowledge that enables a perva-

sive computing application to provide better services and functionalities may easily be misused,

causing security breaches. The problem is serious because pervasive computing applications in-

volve interactions between a large number of entities that can span different organizational bound-

aries. Unlike traditional applications, these applications do not usually have well-defined security

perimeter and are dynamic in nature. Moreover, these applications use knowledge of surrounding

physical spaces. This requires security policies to use contextual information that, in turn, must

be adequately protected from security breaches. Uncontrolled disclosure of information or uncon-

strained interactions among entities can lead to very serious consequences. Traditional security

policies and mechanisms rarely address these issues and are thus inadequate for securing pervasive

computing applications. Our work focuses on understanding the security challenges involved in

pervasive computing applications and proposing solutions to some of the problems.

In subsequent paragraphs we summarize the various aspects related to security of pervasive

computing environments that we investigated in this project. Details about these works can be

found in our publications. We highlight some of the more important contributions in the remaining

chapters of this report.

Our first task focussed on access control models for pervasive computing applications. Al-

13

though a lot of research appears in extending traditional access control models for novel applica-

tions, we found the models not expressive enough to meet the requirements of pervasive computing

applications. Our first contribution involves extending existing access control models to incorpo-

rate the notion of location and time. Our models allow the application to specify various types of

spatio-temporal constraints that may arise in pervasive computing applications. The various fea-

tures of the models may interact resulting in conflicts and inconsistencies. Towards this end, we

show how the models can be formally analyzed. We use the Alloy Analyzer, which has an embed-

ded SAT solver, to understand the subtleties involved with feature interactions. We demonstrate

the applicability of this model in a real-world - the Dengue Decision Support system that is being

designed at Colorado State University to be deployed in Mexico. An application using our access

control model must be analyzed to provide assurance that correct policies have been specified.

Towards this end, we show how such analysis can be done using two techniques: one using UML

and Alloy and the other using Coloured Petri Nets (CPNs).

Pervasive computing applications are dynamic in nature - the entities, the resources, and the

access patterns may change during the course of application. In the face of such dynamism, it

is essential to ensure that access control breaches do not occur. Since the required analysis must

be done in real-time, it is equally important to minimize the verification time. To address this

important problem, we formalize the semantics of our spatio-temporal model using graph theory

and provide incremental analysis techniques. We achieve very good complexity results. In addi-

tion, one side effect of this work is the development of a new and efficient common predecessor

detecting algorithm in a dynamic graph, the results of which can be used in various application

domains.

Pervasive computing environments often involve interactions with different types of entities,

not all of which are equally trustworthy. The nature of interactions between entities depend on

the trust relationship between them. Towards this end, we model and quantify trust relationships

within pervasive applications. In the model that we propose, the trust relationship between a truster

and trustee is associated with a context and depends on the experience, knowledge, and recommen-

dation that a truster has with respect to the trustee in the given context. Experience quantifies the

past interactions that the truster had with the trustee, knowledge assesses the verifiable properties

of the trustee, and recommendation measures how much other entities trust the trustee with respect

to the given context. The absence of one or more of these values in a given context precludes com-

puting the trust value in that given context. To overcome this problem, we formalize the notion of

contexts and capture the relationships between different contexts in the form of a context graph.

This allows one to extrapolate trust values from related contexts when all the information needed

to compute trust is not available. It also helps resolve the semantic mismatches that occur when

various sources use different terminology to represent contexts. We demonstrate the use of this

trust model for providing trust-based access control in pervasive computing systems and also for

14

finding a reliable path for propagating sensor data to processing nodes.

Security management is an important task in pervasive computing environments as some de-

vices, specially sensor nodes, have limited computation and communication capabilities. For secu-

rity management of these applications it is necessary to impose and maintain some secured struc-

ture within the sensor network if one is involved in the application. Clustering is a key technique

that simplifies network management in such large-scale sensor networks. A secure backbone, built

by a cooperating hierarchy of clusters in the form of a cluster tree, can further enhance upper

layer functions, such as secure routing, secure session key distribution between applications, se-

cure broadcasting, and secure query delivery. We investigate the design of such a secure backbone

for sensor networks based on the cluster tree approach. We integrate the Hierarchical Hop-ahead

Clustering algorithm with a secret key pre-distribution scheme to build such a secure backbone.

The key pre-distribution scheme based on Random Block Merging in Combinatorial Design has

very low computational cost and communication overhead. The protocol ensures that at least one

common key exist between any pair of nodes.

The rich connectivity among computing elements in pervasive environments and abundance

of low capability devices may cause irreparable damage by an attack. In order to address this

problem, we propose a model that evaluates the chances of a successful attack. This allows one to

put appropriate security controls where and when needed. In spite of security controls, it is possible

for fast spreading worms to wreck havoc. Typically, we protect against such malicious worms

using filtering techniques based on signatures derived from the worm code. However, worms can

be designed to spread so rapidly that by the time a signature is developed and distributed the

damage is done, thus rendering any signature-based mediation futile. We formulate an automatic

distributed monitoring system to trace rapidly spreading worms back to their origins. It works

by correlating anomalous events across a network and establishing a causal relationship between

them. We show that even with less than perfect deployment (about 20%) of this system, it can very

rapidly and accurately narrow down the worm origin to a small set of possibilities. Appropriate

action can then be taken to respond to such attacks.

Pervasive computing applications typically involve information flow over a complex network

of devices. Effective security mechanisms need to be deployed to protect these applications. The

choice of security mechanisms in pervasive environments is influenced by a number of factors, the

most important among which are the heterogeneity of the computing devices, resource constraints

of these devices, the cost of deploying security mechanisms on these devices, and the attack cov-

erage provided by them. An optimal set of security measures is often difficult to define because

of the conflict between the level of security achievable by a mechanism and these other factors.

As a first step, we investigate the problem of selecting a subset of security hardening measures so

as to be within a fixed budget and yet minimize the residual damage to the system caused by not

plugging all security holes. We formulate the problem as a multi-objective optimization problem

15

and develop a systematic approach to solve the problem using non-dominated sorting genetic algo-

rithm on an attack tree model of the system. We believe that an attacker's perceived gains through

a specific attack strategy can (and should) influence the security administrator's decision to employ

a particular defense strategy. Thus we refine the security provisioning problem as a payoff prob-

lem to maximize the return on investment under the scenario that an attacker is actively engaged

in maximizing its return on attacks. Subsequently, we show how workflow profiles can be used to

capture the contexts in which a communication channel can be used in a pervasive environment.

We formulate a set of constrained multi-objective optimization problems that minimize the residual

damage and the maintenance cost incurred to keep the workflow secure and running.

Pervasive computing applications often involve sharing sensitive data across organizational

boundaries. For instance, one may want to prevent disclosing the identity of an individual. One

well-known model preventing identity disclosure is the ^-anonymity model. The idea is to make

a tuple indistinguishable from k — 1 other tuples by generalizing and/or suppressing attributes.

Unfortunately, such transformations result in a considerable loss of information. The information

loss is proportional to the value oik. Studies have focussed on minimizing the information loss

for some given value of &. However, owing to the presence of outliers, a specified k value may

not be obtainable all the time. Further, an exhaustive analysis is required to determine a k value

that fits the loss constraint acceptable to a data requester. We investigate the problem of finding

an optimal value of k for a given data set. Specifically, we develop a methodology to analyze

the trade-off of the generalization losses involved with variations in k. Such types of analysis can

reveal, for example, that it is possible to provide a higher level of privacy for a higher fraction of

the data set without compromising much on its information content. It can also identify ways of

examining if the level of privacy required by a human subject is achievable within the acceptable

limits of perturbing data quality. We use multi-objective evolutionary optimization for exploring

the trade-offs involved with minimizing information loss and maximizing privacy.

Privacy models, such as k-anonymity, offer an aggregate or scalar notion of the privacy property

that holds collectively on the entire anonymized data set. However, they fail to give an accurate

measure of privacy with respect to the individual tuples. For example, two anonymizations achiev-

ing the same value of k in the ^-anonymity model will be considered equally good with respect

to privacy protection. However, it is possible that in one anonymization a majority of individuals

have a higher probability of privacy breach than the other. We, therefore, reject the notion that

all anonymizations satisfying a particular privacy property, such as k-anonymity, are equally good.

The scalar or aggregate value used in the privacy models is often biased towards a fraction of the

data set, resulting in higher privacy for some individuals and minimal for others. To better compare

anonymization algorithms, there is a need to formalize and measure this bias. Towards this end,

we propose the use of property vector to represent privacy and other measurable properties of an

anonymization. We show how anonymizations can be compared using quality index functions that

16

quantify the effectiveness of property vectors. We also propose some preference based techniques

when comparisons must be made across multiple properties induced by anonymizations.

Data availability is also very important in pervasive computing applications. Data access in

a pervasive environment can be modeled by a push-pull based broadcast architecture, specifically

characterized by the time critical nature of the data requests. We investigate the problem of data

broadcast scheduling in an environment where the time criticality is specified by a soft deadline

that is directly related to the data utility. Our experiments reveal that the broadcast schedule gen-

erated using heuristics can be improved by hybridizing them with local search techniques. Our

experiments further illustrate that an evolution strategy based search technique does even better.

Pervasive computing applications are very complex. Security issues cannot be added as an

afterthought in such applications. We demonstrate how to design such applications using an aspect-

oriented methodology. In our approach, the application is decomposed into modules on the basis

of functionality - we refer to this as the primary model. We model each security concern that is

of interest as an aspect. The aspect is then methodically composed with our primary model. The

result of the composition is a model that represents the application in which the security concern

has been addressed. We show how to verify resulting model to ensure that the important properties

of aspects are preserved in it. We also demonstrate how to do trade-offs among different security

aspects all of which satisfy the same security property by using Bayesian Belief Networks.

Since the Unified Modeling Language (UML) is the de facto specification language in the soft-

ware industry, we use it to for modeling the aspects and primary model. However, UML does not

have much tool support for automated analysis. Towards this end, we show how existing tools for

UML analysis, such as OCLE and USE, can be extended to support behavioral analysis. We also

demonstrate an alternative approach that involves converting the UML specification automatically

to Alloy using UML2Alloy and verify the resulting specification using the Alloy Analyzer.

The rest of the report highlights some of our more important contributions. It is organized as

follows. Chapter 2 presents our spatio-temporal role-based access control model that can be used

for pervasive computing applications. Chapter 3 demonstrates the use of this model for real-world

applications and shows how to provide assurance that no access control breach occurs. Chapter

4 refines the model and expresses the semantics using graph-theory. Chapter 5 proposes a trust

model, based on subjective logic, that can be used for pervasive computing applications. Chap-

ter 6 describes how risk estimation and security provisioning can be done in the face of resource

constraints. Chapter 7 shows how location information, captured by pervasive computing applica-

tions, can be disseminated in a careful and controlled manner. Chapter 8 provides a methodology

for designing secure pervasive computing applications. Chapter 9 concludes this report and gives

some future directions.

17

v II ii 131C 1 —

Spatio-Temporal Role-Based Access
Control Model

Pervasive computing applications use the knowledge of the surrounding context to provide better

applications and services. Context information can be also used to provide better security for such

applications. For example, access to a system need to be enabled only when a user enters a room

and it to be disabled when he leaves the room. Traditional access control models, such as, DAC,

BLP, or RBAC, do not take into account such environmental factors while making access deci-

sions. Towards this end, we propose a spatio-temporal access control model for use in pervasive

computing applications.

We choose to base our model on RBAC primarily because the latter is policy-neutral, simplifies

access management, and widely used by commercial applications. We illustrate how each com-

ponent of RBAC can be related with time and location, and explain how they impact each entity

and relationship in RBAC. We also demonstrate how spatio-temporal information can be used for

making access decisions. The various features supported by our model are specified using logical

constraints. These features often interact in subtle ways resulting in inconsistencies and conflicts.

Consequently, it is important to analyze and understand these interactions before such models can

be widely deployed.

Manual analysis is often not rigorous, frequently tedious and error-prone. Analyzers based on

theorem proving are hard to use, require expertise, and need manual intervention. Model checkers

are automated but are limited by the size of the system they can verify. Considering these, we

advocate the use of Alloy [24] for checking access control models. Alloy is a modeling language

capable of expressing complex structural constraints and behavior. It supports automated analysis.

Moreover, it has been successfully used in the modeling and analysis of real-world systems [15,

48]. We demonstrate how Alloy can be used for analyzing the interaction of the different features

of our access control model.

The rest of the chapter is organized as follows. Section 2.1 describes the highlights of our

is

model. Section 2.2 illustrates our analysis techniques using Alloy. Section 2.3 concludes this

chapter with directions for future work.

2.1 Our Model

We briefly describe how the different entities of core RBAC, namely, Users, Roles, Sessions, Per-

missions, Objects and Operations, can be associated with location and time. This forms the basis

of our new authorization model.

Users and Objects
Users in our model can be human users or other entities such as sensor devices. For the rest

of this discussion we refer to a user as a human user although all the concepts presented here

applies equally to other entities. We assume that each valid user, interested in doing some location-

sensitive operation, carries a locating device which is able to track her or its location. The location

of a user changes with time. The relation UserLocation(u,t) gives the location of the user at any

given time instant /. Since a user can be associated with only one location at any given point of

time, we have the following constraint:

UserLocation(u,t) = // AUserLocation(u,t) = lj o (/, C lj) V (/, C /,)

We define a similar function U serLocations{u,d) that gives the location of the user during the time

interval d. We define a function ObjLocations{o,d) in the same manner which gives the location

of an object at any given time.

Roles

We have three types of relations with roles. These are user-role assignment, user-role activation,

and permission-role assignment. We begin by focusing on user-role assignment. In our model, a

user must satisfy spatial and temporal constraints before roles can be assigned. We capture this

with the concept of role allocation. A role is said to be allocatedwhen it satisfies the temporal and

spatial constraints needed for role assignment. A role can be assigned once it has been allocated.

RoleAllocLoc(r) gives the set of locations where the role can be allocated. RoleAllocDur(r) gives

the time interval where the role can be allocated. Some role s can be allocated anywhere, in such

cases RoleAllocLoc(s) = universe. Similarly, if role p can be assigned at any time, we specify

RoleAllocDur(p) = always.

Some roles can be activated only if the user is in some specific locations at a given time. We

borrow the concept of role-enabling [4, 29] to describe this. A role is said to be enabled if it

satisfies the temporal and location constraints needed to activate it. A role can be activated only

if it has been enabled. RoleEnableLoc{r) gives the location where role r can be activated and

RoleEnableDur(r) gives the time interval when the role can be activated.

19

The predicate UserRoleAssig?i(u,r,d.l) states that the user u is assigned to role r during the

time interval d and location /. For this predicate to hold, the location of the user when the role was

assigned must be in one of the locations where the role allocation can take place. Moreover, the

time of role assignment must be in the interval when role allocation can take place.

U serRoleAssign{u,r,d J) => (ÜrserLocation(u,d) = I)A

(/ C RoleAllocLoc(r)) A{dC RoleAllocDur(r))

The predicate UserRoleActivate{u,r,d,l) is true if the user u activated role r for the interval d at

location /. This predicate implies that the location of the user during the role activation must be

a subset of the allowable locations for the activated role, all time instances when the role remains

activated must belong to the duration when the role can be activated, and the role can be activated

only if it is assigned.

User Role A ct ivate{ u,r,d,l) =>

(/ C RoleEnableLoc(r)) A{d C RoleEnableDur(r)) MJserRoleAssign(u,r,d,l)

The additional constraints imposed upon the model necessitates changing the preconditions of the

functions AssignRole and ActivateRole.

Permissions

The goal of our model is to provide better security than their traditional counterparts. This

happens because the time and location of a user and an object are taken into account before making

the access decisions. Our model also allows us to model real-world requirements where access

decision is contingent upon the time and location associated with the user and the object.

Permissions are associated with roles, objects, and operations. We associate three additional

entities with permission to deal with spatial and temporal constraints: user location, object location,

and time. We define three functions to retrieve the values of these entities. PermRo\eLoc{p,r)

specifies the allowable locations that a user playing the role r must be in for him to get permission

p. PermObjLoc(p,o) specifies the allowable locations that the object o must be in so that the

user has permission to operate on the object o. PermDur(p) specifies the allowable time when the

permission can be invoked.

We define another predicate which we term PermRoleAcquire(p,r,d,l). This predicate is true if

role r has permission p for duration d at location /. Note that, for this predicate to be true, the time

interval d must be contained in the duration where the permission can be invoked and the role can

be enabled. Similarly, the location / must be contained in the places where the permission can be

invoked and role can be enabled.

PermRoleAcquire(p,r,d,/) => (/ C (PermRoleLoc{p,r)r\RoleEnableLoc(r)))

A{dC (PermDur(p)HRoleEnableDur(p)))

20

The predicate PermUserAcquire{u,o,p,d, I) means that user u can acquire the permission p on

object o for duration d at location /. This is possible only when the permission p is assigned some

role r which can be activated during d and at location /, the user location and object location match

those specified in the permission, the duration d matches that specified in the permission.

PermRoleAcquire(p,r,d, I) A U serRoleActivate{u, r,d, I)

A(ObjectLocation(o,d) C PermObjectLoc(p,o)) => Permit serAcquire(u.oyp,dJ)

Impact of Time and Location on Role-Hierarchy

Organization structure is reflected in RBAC in the form of a role hierarchy [45] which is a

transitive, anti-symmetric relation among roles. Senior roles can inherit the permissions of junior

roles, or a senior role can activate a junior role, or do both depending on the nature of the hierarchy.

Joshi et al. [29] identify two basic types of hierarchy. The first is the permission inheritance

hierarchy where a senior role x inherits the permission of a junior role v. The second is the role

activation hierarchy where a user assigned to a senior role can activate a junior role. Each of these

hierarchies may be constrained by location and temporal constraints. Consequently, we have a

number of different hierarchical relationships in our model one of which is described below.

[Unrestricted Permission Inheritance Hierarchy] A senior role inherits the junior roles permis-

sions but not the spatial and temporal constraints associated with it. If .v and v are roles such that

x > y, that is, senior role x has an unrestricted permission-inheritance relation over junior role y,

then x inherits v's permissions but not the locations and time associated with it.

(JC > y) A PermRoleAcquire(p,y, d. 1) => PermRoleAcquire{p.x. always, universe)

We define the other hierarchies, namely, unrestricted activation hierarchy, location restricted

permission inheritance hierarchy, location restricted activation hierarchy, time restricted permis-

sion inheritance hierarchy, time restricted activation hierarchy, time location restricted permission

inheritance hierarchy, and time location restricted activation hierarchy, in a similar manner. The

hierarchies differ with respect to the spatio-temporal constraints imposed on the corresponding

hierarchical relationship.

Impact of Time and Location on Separation Of Duties

Separation of duties (SoD) enables the prevention of the fraud that may be caused by the user

[46] when she performs an action that require two or more steps. SoD can be either static or

dynamic. Static Separation of Duty (SSoD) comes in two varieties. First one is with respect to

user role assignment. The second one is with respect to permission role assignment. In this case,

the SSoD constraint is specified as a relation between roles. The idea is that the same user cannot

be assigned to the same role. Due to the presence of temporal and spatial constraints, we can

have different flavors of separation of duties - some that are constrained by temporal and spatial

constraints and others that are not. One example of such a constraint is as follows:

21

[Weak Form of SSoD - User Role Assignment] Let x andy be two roles such that x ^y. x,y £

SSODw{ROLES) if the following condition holds:

UserRoleAssign(u,x,dJ) => -» UserRoleAssign(u,y,d,l)

The above definition says that a user u assigned to role x during time d and location / cannot be

assigned to role v at the same time and location if x axidy are related by SSODw.

We have other forms of SSoD constraints that we do not elaborate here. These include strong

temporal form of SSoD - user role assignment, strong spatial form of SSoD - user role assignment,

strong form of SSoD - user role assignment, weak form of SSoD -permission role assignment,

strong temporal form of SSoD - user role assignment, strong spatial form of SSoD - user role

assignment, and strong form of SSoD -permission role assignment. These differ with respect to

the influence of spatio-temporal constraints on the relationships. We have various flavors of DSoD

constraints as well that are identified in our publications [42, 43, 50, 51, 52].

2.2 Model Analysis

We use Alloy to analyze the interaction of the various features of the access control model. Alloy

is supported by an automated constraint solver called Alloy Analyzer that searches instances of the

model to check for satisfaction of system properties. The model is automatically translated into

a Boolean expression, which is analyzed by SAT solvers embedded within the Alloy Analyzer.

A user-specified scope on the model elements bounds the domain, making it possible to create

finite Boolean formulae that can be evaluated by the SAT-solver. When a property does not hold, a

counter example is produced that demonstrates how the property has been violated.

An Alloy model consists of signature declarations, fields, facts and predicates. Each signature

consists of a set of atoms which are the basic entities in Alloy. Atoms are indivisible (they cannot

be divided into smaller parts), immutable (their properties do not change) and iminterpreted (they

do not have any inherent properties). Each field belongs to a signature and represents a relation

between two or more signatures. A relation denotes a set of tuples of atoms. Facts are statements

that define constraints on the elements of the model. Predicates are parameterized constraints that

can be invoked from within facts or other predicates.

The basic entities in the access control model, such as, User, Time, Location, Role, Permission

and Object are represented as signatures. For instance, the declarations shown below define a set

named User and a set named Role that represent the set of all users and the set of all roles in the

system respectively. Inside the Role signature body, we have four relations, namely. RoleAllocLoc,

RoleAllocDur, RoleEnableLoc, and RoleEnableDur which relates Role to other signatures.

sig User{}

sig Role{

22

RoleAllocLoc: Location,

RoleAllocDur: Time,

RoleEnableLoc: Location,

RoleEnableDur: Time}

The different relationships between the components in our model are also expressed as signa-

tures. For instance, RoleEnable has a field called member that maps to a cartesian product of Role,

Time and Location. Similarly, RoleHierarchy has a field RHmember that represents a relationship

between Role and Role. Different types of role hierarchy are modeled as the subsignatures of

RoleHierarchy.

sig RoleEnable (member: Role -> Time -> Location}

sig RoleHierarchy { RHmember: Role -> Role}

sig TJPIH, TPIH, LPIH, TLPIH, UAH, TAH, LAH, TLAH extends

RoleHierarchy{}

The various invariants are represented as facts in Alloy. For instance, the fact URActivate

states that for user u to activate role r during the time interval d and location /, this user has to be

assigned to role r in location / during time d. Moreover, the location of the user must be a subset

of the locations where the role is enabled, and the time must be in the time interval when role r can

be enabled. This is specified in Alloy as shown below. Other invariants are modeled in a similar

manner.

fact URActivate{

all u: User, r: Role, d: Time, 1: Location, uras: UserRoleAssignment,

urac: UserRoleActivate |

((u->r->d->l) in urac.member) => (((u->r->d->l) in uras.member) &&

(1 in r.RoleEnableLoc) && (d in r.RoleEnableDur))

}

We use Alloy's fact feature to represent the properties of the different hierarchies. The fact

UPIHFact represents the Unrestricted Permission Inheritance Hierarchy's property. The fact states

that senior role sr can acquire all permissions assigned to itself together with all permissions

assigned to the junior role j r .

//Unrestricted Permission Inheritance Hierarchy

fact UPIHFact{

all sr, jr: Role, p: Permission, d: Time, 1: Location, upih: UPIH,

rpa: RolePermissionAssignment, pra: PermRoleAcquire |

((sr->jr in upih.member) && (jr->p->d->l in pra.member) &&

23

(sr->p lin (rpa.member).Location.Time)) =>

(sr->p->sr.RoleEnableDur->sr.RoleEnableLoc) in pra.member}

The separation of duty constraints are modeled as predicates. Consider the weak form of SSoD

User Role Assignment. This constraint says that a user u assigned to role r\ during time d and

location / cannot be assigned to its conflicting role rl at the same time and location. The other

forms are modeled in a separate manner.

//Weak Form of SSoD-User Role Assignment

pred W_SSoD_URA(u: User, disj rl, r2: Role,

ura: UserRoleAssignment.member, d: Time, 1: Location){

((u->rl->d->l) in ura) => ((u->r2->d->l) not in ura)

}

r

A UPIHO

RHmember[RoleO] 7~V
RHmember[Role2]

membe/tRoteO.Time]

member[Rotel.Tinie]

RoleAllocLoc

.

Location
($TestConflictl_l_l)

7 mefTiber[Ro(e2.Timel ^v^ RoleAllocTirne
RoleAllocLoc \

UserRoleAssignment
Role2

($TestConflictl_l_x)

Figure 2.1: Counterexample for assertion TestConflict

Once our access control model has been specified in Alloy, we need to verify whether any

conflicts occur between the features of the model. We rely on the capabilities of the Alloy analyzer

for this purpose. We create an assertion that specifies the properties we want to check. Once the

assertion has been created, we let Alloy analyzer validate the assertion by using check command.

If our assertion is wrong in the specified scope. Alloy analyzer will show the counterexample.

For instance, to check the interaction of the weak form of SSoD, User Role Assignment and the

Unrestricted Permission Inheritance Hierarchy, we make the assertion shown below. The assertion

does not hold as illustrated by the counterexample shown in Figure 2.1.

24

// WSSoD_URA violation in the present of UPIH Hierarchy

check TestWSSoD URA —
assert TestConflict{

no u: User, disj x, y: Role, upih: UPIH,

d: Time, 1: Location, ura: UserRoleAssignment |

((x->y in A(upih.member)) &&

(u->x->d->l in ura.member)) =>

W_SSoD_URA[u, x, y, u->(x+y)->d->l, d, 1]

}
check TestConflict

The counterexample shows one possible scenario. In this case, it uses the following instances

to show the violation.

1. Role = {RoleO,RoleX,Role2)

2. UPIHO = {RoleO -> RoleX,Role2 — RoleO,Role2 — Role\}

3. Time = d, Location = /

4. UserRoleAssignment = {User —> RoleO —+ Time —* Location. User —► RoleX —> Time —*

Location,User —» Role2 —> Time -^ Location}

Substituting x and y in WSSoDURA predicate with Role2 and RoleX respectively, we get the

violation.

Similar types of analysis reveals that the various forms of SSoD permission role inheritance

conflict with the different forms of permission inheritance hierarchy. Conflicts were also detected

with the various forms of SSoD user role assignment with different forms of permission inheritance

hierarchy. Further, the various forms of DSoD constraints conflict with the different forms of role

activation hierarchy. Another source of conflict occurs between role activation and permission

when the corresponding location constraints or the temporal constraints do not overlap.

2.3 Conclusion and Future Work

Traditional access control models do not take into account environmental factors before making

access decisions. Thus, these models are not quite suitable for pervasive computing applications.

Towards this end, we propose a spatio-temporal role based access control model. We identify the

entities and relations in traditional RBAC and investigate their relationships with location and time.

These relationships necessitate changes in the invariants and the operations of RBAC. The behavior

25

of the new model is formalized using constraints. We investigate the relationships between the

different constraints and how they interact with each other.

There still remains some work to be done. We need to investigate how to store location and

temporal information in an optimal manner, so that they can be used by the access control en-

forcement module. Pervasive computing applications are typically represented as workflows. This

necessitates our developing a spatio-temporal access control model for workflows. Workflows have

additional control-flow and data-flow dependency constraints. It would be interesting to see how

these constraints are affected by the spatio-temporal authorization constraints.

26

Chapter 3

Applying Spatio-Temporal Model to
Real-World Applications

The proposed spatio-temporal role-based access control is suitable for various types of application.

However, when such a model with numerous features is used for protecting a given application,

we must provide assurance that no access control breach occurs. We propose a methodology that

describes how we can get assurances that an application is indeed adequately protected. We use

a real-world application called the Dengue Decision Support (DDS) system to illustrate our ap-

proach. The DDS application is being developed by the Colorado State University in collaboration

with the government of Mexico to help state-level public health officials respond to local outbreaks

of dengue. Health officials are provided with mobile phones that run this application. They move

from location to location gathering statistics about mosquito population which is then uploaded to

a central system for further analysis.

In order to formally analyze the authorization policies for the application, it is important to

specify the application and its access control requirements in a formal specification language. We

chose the Unified Modeling Language (UML) [34] for several reasons. First, it is the de facto

modeling language used in the software industry. Second, it is easy to use and understand. Third,

it is used together with Object Constraint Language (OCL), which is based on first order predicate

logic; this makes specifications in UML amenable to analysis. We show how the existing access

control requirements for the DDS can be specified using UML and OCL.

Although formal analysis can be done on UML specifications that are augmented with OCL

constraints, there is not much tool support for automated analysis. Towards this end, we advocate

the use of Alloy [24] for doing automated analysis. We collaborated with researchers at University

of Birmingham, U.K., in the development of a tool called UML2AlIoy [1,2] that automatically

transforms UML class diagrams and OCL statements into Alloy models, which can then be verified

by the Alloy Analyzer. The analysis demonstrates how well the access control requirements protect

the application.

27

The rest of the chapter is organized as follows. Section 3.1 provides a brief background on

how UML models can be transformed into Alloy specifications. Section 3.2 describes the Dengue

Decision Support System and its access control requirements. Section 3.3 illustrates the model

analysis process in the context of DDS. Section 3.4 concludes the chapter and enumerates future

research.

■

3.1 UML to Alloy Transformation

We propose an approach that will transform UML models with OCL constraints into an Alloy

specification. Alloy [22. 23, 24, 57] is a fully declarative first-order logic language designed for

modeling and analyzing complex systems. An Alloy model consists of a number of signature and

relation declarations. A signature specifies entities used to model the system, and relation decla-

rations specify the dependencies between such entities, allowing the designer to capture complex

structures. Alloy is supported by a fully automated constraint solver, called Alloy Analyzer , that

analyzes system properties by searching for model instances that violate assertions about them.

Alloy Analyzer translates the model into a Boolean expression, and analyzes it using embedded

SAT-solvers. The user specifies a scope to the tool, which is an integer number used to bound

the domain of model elements. Bounding enables the tool to create finite Boolean formulas for

evaluation by the SAT-solver. If Alloy Analyzer produces an instance that violates the assertion (a

counterexample), we can infer that the specified property is not satisfied.

There are clear similarities between Alloy and UML languages such as class diagrams and

OCL. From a semantic point of view both Alloy and UML can be interpreted by sets of tuples

[25, 44]. Alloy is based on first-order logic and is well suited for expressing constraints on object

oriented models. Similarly, OCL has extensive constructs for expressing constraints as first order

logic formulas. Considering such similarities, model transformation from UML class diagrams

and OCL to Alloy seems straightforward. However, UML and Alloy have fundamental differ-

ences, which are deeply rooted in their underlying design decisions. For example, Alloy makes

no distinction between sets, scalars and relations, while the UML makes a clear distinction be-

tween the three. Other examples include that UML supports a number of primitive types, whereas

Alloy only supports integers. UML also supports aggregation and composition, but there is no

counterpart in Alloy. All of this makes the transformation from UML to Alloy challenging.

Figure 3.1 depicts an outline of our approach. Using the Extended Backus-Naur Form (EBNF)

representation of the Alloy grammar [25], we first generate a Meta Object Facility (MOF) compli-

ant [36] metamodel for Alloy. We then select a subset of the class diagrams [33] and OCL [37]

metamodels. To conduct the model transformation, a set of transformation rules has been defined.

The rules map elements of the metamodels of class diagram and OCL into the elements of the

metamodel of Alloy. The rules have been implemented into a prototype tool called UML2Alloy.

— 0

C-L2SS d 132rsun
mctamodcl

OCL
mctamodcl

Transformation
Rules

«ConlJoxwTo»
«Conf drmTo» .

Class diagram

«Implements»

Alloy
mctamodcl

EBNF represents..»,,
of Alloy's grammar

OCL
statements

Alloy model

Figure 3.1: Outline of the transformation method

If a UML class diagram, which conforms to the subset of UML we support, is provided as input to

UML2Alloy, it automatically generates an Alloy model. For lack of space, we do not show how

the EBNF representation of Alloy's grammar is transformed into a MOF compliant metamodel but

refer the interested reader to [1]. In addition, the UML and OCL metamodels are not presented

here, but can be found in the respective specification documents [33, 37].

Table 3.1 presents a table which provides an informal mapping between the most important

elements of the UML and OCL metamodels and Alloy. More specifically a UML Class is translated

to an Alloy signature declaration (ExtendsSigDecf), which defines a Sigld with the same name. If

the class is not a specialization, the Alloy signature is not related to any SigRef. Otherwise, it may

be related to a SigRef, which references the signature it might extend.

A Property is translated to a declaration expression (declExp), which is used to define a field in

an Alloy model. An Operation is transformed to a Predicate and the Parameters of the operation

are transformed to declarations (Dec!). An Enumeration [33] is transformed to a signature declara-

tion SigDecI, which declares an abstract signature. An EnumerationLiteral is transformed to a sub

signature. A more complete transformation rules from UML to Alloy and their implementation are

explained in our paper [1].

3.2 Dengue Decision Support System

We illustrate our approach using a real-world Dengue Decision Support (DDS) system. DDS helps

state-level public health officials respond to local outbreaks of dengue. Response consists of vec-

tor control and vector surveillance, namely, spraying (control) and investigating locations where

mosquitoes may be breeding and living (surveillance), and if the level of confirmed dengue cases

has increased above a prescribed threshold. Public health officials are organized in jurisdictions,

29

UML+OCL metamodel element Alloy metamodel element

Class ExtendsSigDecl
Property DeclExp

Operation Predicate
Parameter Decl

Enumeration ExtendsSigDecl
EnumerationLiteral ExtendsSigDecl

Constraint Expression

Table 3.1: Informal mapping between UML and Alloy metamodel elements

based on population, and multiple jurisdictions are included in a single state. When the threshold

is reached, officials at both levels respond. The jurisdiction officer activates vector control and

surveillance teams that are local to the jurisdiction, with instructions regarding the specific control

and surveillance protocols to follow and the locations where they are to be performed. The state

officer releases materials for control to the team, and the local team then performs the controls

and surveillance ordered. The jurisdiction and state vector control officials are often located in

different buildings, although the vector control team is co-located with the jurisdiction officer. All

control materials are located in warehouses elsewhere, and for coordination reasons are controlled

by the state officer. Information about specific cases of dengue is retained in what is called an epi-

demiological study. This data includes information about the patient, the location where the patient

lives (the premise), the case, and control and surveillance actions performed at the premise. The

patient and case data are considered private information, and are only available to epidemiologists

at the jurisdiction and state levels. The vector control team receives premise information along

with orders for control and surveillance. However, the team also needs to have names associated

with the premises in order to validate the location. The team therefore needs access to some of the

patient data for a fixed period of time, in order to perform control and surveillance duties. For lack

of space, we omit giving the full specification.

Security Policies

Entities

DDS system consists of the following roles: State Epidemiologist, Jurisdiction Epidemiologist,

Clinic Epidemiologist, Clinician, State Vector Control, Jurisdiction Vector Control, and Local Ju-

risdiction VC Team. Tasks user can perform are listed in Table 3.2. Each role can perform their

own set of tasks in the designated location and time summarized in Table 3.3.

30

Task Task
1 Read Premise 10 Read VControl
2 Change Premise 11 Change VControl
3 Read Case 12 Read Work Record
4 Change Case 13 Change Work Record
5 Read Patient 14 Read VC Materials
6 Change Patient 15 Change VC Materials
7 Read Patient Names 16 Signal VC Need for DV
8 Read Schedule Work 17 Signal VC Need for DHF
9 Change Schedule Work

Table 3.2: DDS Tasks List

Role Tasks Location Constraint Time Constraint
State Epi 16 A-State Office a-Regular Hours
Juris Epi 1,3

17
B-Juris Office
B-Juris Office

a-Regular Hours
b-Any Time

Clinic Epi 17 C-Clinic b—Any Time
Clinician 1,2,3,4,5,6 C-Clinic a-Regular Hours
State VC 11, 15 A-State Office a-Regular Hours
Juris VC 1,8,9,10,12,14 B-Juris Office a-Regular Hours
Local VC Team 7

1,9,13

B-Juris Office, E-
Emergency Location

B-Juris Office, D-Field

c-24 Hours Window
after signal to begin
work
a-Regular Hours

Table 3.3: DDS Role Constraints

Role Hierarchy

Some roles in the DDS are related using unrestricted permission inheritance hierarchy. Using our

model, these relationships can be defined as follow: State Epi > Juris Epi, Clinic Epi > Clinician,

and State VC > Juris VC.

Separation of Duty

There are two separation of duty constraints in DDS system. Both are the strong spatial form of

static separation of duty. These permissions should not be assigned to the same user at the same

time at any location. Note however, unlike traditional separation of duty, these permissions can be

assigned to the same user at different times.

1. User should not have permission to change VC protocols at the same time as he has permis-

sion to change VC materials.

2. User should not have permission to signal DV at the same time as signal DHF.

31

These can be represented in STRBAC as follow: (11,15)6 SSOD_PRA, and (16,17) e SSOD_PRA,

3.3 Model Analysis

Security analysis begins with abstracting and transforming the security policies of DDS into a

UML class diagram and accompanying OCL statements. The class diagram depicts the entities

that take part in the model, and defines their attributes related in the access control operations,

such as the time and location attribute. OCL statements specify the invariants of the model such

as the tasks assigned to role and security constraints that all entities in the model must satisfy.

The next step involves using UML2Alloy to automatically transform the class diagram and OCL

statements into an Alloy model, which is subsequently analyzed using Alloy Analyzer.

3.3.1 Stage 1: Model Abstraction

We first simplify the original model by removing non-essential elements so that the translation to

Alloy produces a model that only contains items necessary to reason about its security properties.

For example, we remove the attributes which are not related with the security such as, gender,

birthdate, ssid from the Person entity since these attributes are not related with the access control

model. The resulting UML class diagram is shown in Figure 3.2.

The permission to role assignments are expressed as OCL constraints. The following OCL

statements depict the constraints for the permission to role assignment for Juris Epi role.

context JurisEpi

inv jurisEpiCon : (self.tasks = (Task :: ONE ->

including (Task :: THREE)) and

self.location = Location :: B and

self.timeCon = Time :: a) or

(self.tasks = (Task :: SEVENTEEN -> including

(Task :: SEVENTEEN)) and

self.location = Location :: B and

self.timeCon = Time :: b)

The effect of permission inheritance hierarchy and separation of duty can also be expressed in

OCL. We omit those details here but refer the interested reader to our paper [53].

3.3.2 Stage 2: Model Transformation

The UML2Alloy tool is used to create an Alloy model from the class diagram and associated OCL

specification. When we apply UML2Alloy to the UML class diagram and its OCL specification,

32

Stit.Epi _ocatVCT«jm

<<«num«ration>>

Location

* : void

B void

C void

0 void

E void

location Locati< n
-

hmtCon Tim«

ZT

0

JunsEpi Cli^ieEpi

<<«num*ration>>

Tim«

a : void

b : void

c . void

^
<<«numoration>>

ONE void

TWO void

THREE void

FOUR void

FIVE void

SIX void

SEVEN : void

EIGHT : void

NINE . void

TEN void

ELEVEN void

TWELVE : void

THIRTEEN void

FOURTEEN : void

FIFTEEN void

SIXTEEN : void

SEVENTEEN :void

Figure 3.2: UML model for DDS's access control policies

the class diagram will be transformed to the following signatures in Alloy corresponding to each
class shown in Figure 3.2.

abstract sig Role{

location:one Location,

timeConrone Time,

tasks:some Task,

uses:set Person}

one sig StateEpi extends Role{}

one sig JurisEpi extends Role{}

some sig Person{roles:some Role}

abstract sig Location)}

one sig A extends Location)}

one sig B extends Location}}

33

sig Time{}

sig a in Time{}

sig b in Time{}

sig c in Time{}

abstract sig Task{}

one sig ONE extends Task{}

one sig TWO extends Task{}

one sig SEVENTEEN extends Task{}

The OCL constraint for the permission role assignment will be transformed to fact and predi-

cate in Alloy. For example, the OCL constraint for the permission role assignment of the Juris Epi

role will be transformed to the following Alloy code.

fact JurisEpi_jurisEpiCon_fact{

all self: JurisEpi | JurisEpi_jurisEpiCon[self]}

pred JurisEpi_jurisEpiCon[self: JurisEpi]{

((self.tasks = ONE+THREE) && (self.location = B) &&

(self.timeCon = a)) || ((self.tasks = SEVENTEEN) &&

(self.location = B) && (self.timeCon in Time))}

The effect of role hierarchy represented in the OCL constraint will also be transformed to

fact and predicate in Alloy. The OCL constraint for the separation of duty constraint will be

transformed to predicate in Alloy. Our paper [53] lists all the detailed specifications.

3.3.3 Stage 3: Model Analysis

Alloy assertions must be formulated prior to analysis by Alloy Analyzer. Assertions are statements

that capture properties we wish to verify. Alloy Analyzer automatically checks such assertions and,

if they fail, produces a counterexample. We have checked several assertions regarding the security

properties of the example system. For example, it is crucial to ensure that no user can change VC

protocols (task 11) at the same time as he has permission to change VC materials (task 15). To

verify this, we create the following assertion:

assert NoConflictPermsSTVCAssigned{

34

all r: Person.roles, d: Time, 1: Location!

((ELEVEN in r.tasks) && (d in r.timeCon) &&

(1 in r.location)) =>

((FIFTEEN !in r.tasks) && (d in r.timeCon) &&

(1 in r.location))}

The assertion produced no counterexample, meaning that it is valid for the given scope, which

in this case was 8. We also checked whether the SoD for role permission assignment is maintained.

assert NoConflictPermsSTVC{

all r: StateVC, d: Time, 1: Location

((ELEVEN in r.tasks) && (d in r.timeCon) &&

(1 in r.location)) =>

((FIFTEEN !in r.tasks) && (d in r.timeCon) &&

(1 in r.location))}

We chose a value of 8 for the scope of this analysis as well. However, this time the analyzer

produced counterexample, which means these conflict permissions can be assigned to the same

role. The counterexample is shown in Figure 3.3.

File Instance Theme Window

A m to a 1
Viz Dot XML Evaiuator Next

(DDSV2) Check NoConflictPermsSTVC for 8
sig seq/lnt

• set $NoConflictPermsSTVC_d
Time

? set $NoConflictPermsSTVC_l
A

o set $NoConflictPerms5TVC_r
t StateVC

9 field location
A

9 field tasks
EIGHT
ELEVEN
FIFTEEN
FOURTEEN
NINE

TV^ELVE
t field timeCon

Time
- set a

set b
o- set c

Figure 3.3: Counterexample for assertion NoConflictPermsSTVC

35

3.4 Conclusion and Future Work

Our spatio-temporal access control model is well suited for securing real-world pervasive comput-

ing applications. However, due to the complexity of the application and the access control model,

we need assurance that the application is indeed adequately protected. We use UML together

with OCL for specifying the application and its access control requirements. Since UML does not

have much automated tool support, we convert the UML model into Alloy and verify the resulting

model automatically. In this chapter, we showed how the specification and verification of a typical

application security policies can be effected in our framework.

The applicability of SAT-solvers (such as the one in Alloy) for the purpose of analysis is limited

by the size of the model that can be verified. Consequently, we are investigating how to further

abstract the model resulting in the construction of smaller SAT formulae that can be efficiently

verified. This, together with new research for improving SAT-solver technology, will alleviate the

limitation mentioned above.

36

Chapter 4

Graph-Theoretic Representation of
Spatio-Temporal Model

In the previous chapters, we outlined the new spatio-temporal role-based access control model

that we have developed as part of this project. The model is specified in terms of constraints that

support the various features of the model. It is important that the model be properly analyzed which

is a non-trivial problem. In this chapter, we refine our original spatio-temporal role-based access

control model into three simpler models so that their semantics can be expressed expressed in terms

of graph theory. The use of graph-theory offers several advantages. It allows one to visualize the

relationships and interactions among the different components of the model. Using the directed

graph representation, the interaction and relationship between components in the model becomes

more clear and expressive. It also allows one to readily detect the presence of inconsistencies using

graph theoretic algorithms. These simple spatio-temporal access control models are more easily

used in real world applications.

The simpler models also serve an important purpose. Pervasive computing applications, in

general, are dynamic in nature. This means that while an application is executing, the entities

requiring access or the resources needing protection may change. In the face of such dynamism, it

is essential to ensure that access control breaches do not occur. Since the required analysis to verify

the satisfaction of security properties must also be done in real-time, it is important to minimize

the verification time. The graph-theoretic approach allows techniques for incremental analysis with

good time complexity results. For example, to detect SoD violations in a dynamic graph, we need

to find whether the nodes connected by SoD constraints have a common predecessor. Applying

a naive algorithm based on Depth First Search, requires 0(kE) time for each change applied to

the graph, where k is the number of SoD constraints and E is the number of edges. We have been

able to improve upon this result significantly by proposing a new common predecessor detecting

algorithm in a dynamic graph.

The rest of the chapter is organized as follows. Section 4.1 presents our spatio-temporal role-

37

based access control model using graph theoretic notations. Section 4.2 focuses on the dynamic

aspects of the model and how we can ensure absence of access control breaches in the face of such

changes. Section 4.3 illustrates our ideas by using an example application. Section 4.4 concludes

the chapter.

4.1 STARBACD: The Refined Spatio-Temporal Model

We begin by giving a graph-theoretic formulation for our spatio-temporal role-based access control

model that supports role hierarchy. The set of vertices V = UURUPUO correspond to the RBAC

entities: Users (U), Roles (R), Permissions (P), and Objects (0). Our model assumes the existence

of the following relationships of RBAC that constitute the set of edges E = UAUPAUPOuRHa U

RHU where

• User-Role Assignment (UA) = U xR

• Permission-Role Assignment (PA) = RxP

• Permission-Object Assignment (PO) =PxO

• Role Hierarchy (RH) = RxRx {a.u}, which can be categorized to:

- the activation hierarchy (RHa) = {(r,/) : (ry,a) G RH}, and

- the permission usage hierarchy (RHU) = {(r,^) : (r.r7,!/) € RH}

We define the notion of activation path, usage path and access path in a manner inspired by

Chen and Crampton [8]. An activation path (or act-path) between vj and vn is defined to be a

sequence of vertices vi,...,v„ such that (vi,V2) € UA and (v,_i,v/) G RHa for / = 3....,«. A

usage path (or u-path) between vi and vn is defined to be a sequence of vertices v\,..., v„ such that

(v/, v/+1) € RHU for /' = 1,..., n - 2, and (v„_ i, v„) £ PA. An access path (or acs-path) between v\

and v„ is defined to be a sequence of vertices vi,..., v„, such that (vi, v/) is an act-path, (v,, v„_ i)

is an u-path, and (v„_ i. v„) e PO.

We assume the existence of a spatio-temporal domain 2). We develop three refined models,

namely, the standard model (STARBACD=), the strong model (STARBACD4"), and the weak

model (STARBACD"). The models differ with respect to the spatio-temporal constraints that

must be satisfied by the entities for the authorization to be successful. The strong model imposes

the most number of constraints and is suitable for military applications. The weak model imposes

the least number of constraints. It is intended primarily for emergency situations where we need

to make rapid decisions yet ensuring that minimum security requirements are not violated. The

details of all three models appear in our paper [54]. We present the highlights of the strong model

only in this chapter.

The strong model is used when the individual entities (users, roles, permissions, objects) and

the different relationships must satisfy the spatio-temporal constraints. Each entity is associated

with spatio-temporal points that indicate where the entity can be activated. For example, the spatio-

temporal points associated with a role specify when and where the role can be activated. Similarly,

the spatio-temporal points associated with a relation indicate when the relationship can be acti-

vated. To illustrate, consider the relation (r.p) £ PA. In this case, we not only have to take into

account the spatio-temporal points at which the role r can be activated in a session and the points

at which the permission p can be invoked, but also we must consider the spatio-temporal points

when r can invoke p.

The spatio-temporal constraints in the strong STARBACD model (or STARBACD+) are de-

scribed using two functions X and /J which are defined below. X : V —* 2®. For vGK, A.(V) C <D

denotes the set of points in space-time at which v can be invoked.

• if u £ U, then X(u) denotes the set of points in space-time at which u may create a session;

• if r £ Rr then X(r) denotes the set of points in space-time at which r may be activated in a

session;

• if p £ P, then X(p) denotes the set of points in space-time at which p may be granted;

• if o £ 0, then X(o) denotes the set of points in space-time at which o may be accessible.

/j : E —► 2®. For e = (v,^) £ E, fi{v,V) denotes the set of points in space-time at which the

association between v and v/ is enabled.

• if (w,r) £ UA, then //(w,r) denotes the set of points in space-time at which u is assigned to r;

• if (rV) € RHa, then //(^' ,r) denotes the set of points in space-time at which r' is senior to r

in the activation hierarchy;

• if (/,r) e RHU, then ^(rf,r) denotes the set of points in space-time at which r' is senior to r

in the permission usage hierarchy;

• if (r,p) G PA, then //(r,p) denotes the set of points in space-time at which p is assigned to r.

• if (p,o) £ PO, then n{p,o) denotes the set of points in space-time at which o is assigned to

Given a path vi,...,v„ in the labeled graph G= (K,£.A.,//), where V = UuRUPuO and

E = UAUPA UPOURHaURHu , we write £(v,,..., v„) = //(v,, v„) C V to denote fljj //(v„ v,+ ,).

The semantics imply that an edge can only be enabled if both endpoints are enabled. Hence,

£(v'i, v„) is the set of points at which every vertex and every edge in the path is enabled.

Authorization in STARBACD+: • a user v£U may activate role v7 £ R at point d£(D if and

only if there exists an act-path v = vj, vj,..., vn = v7 and d £ Ju(v, \/);

• a role v £ R is authorized for permission v7 e P at point d £<D if and only if there exists

an u-path v = v\, v2,..., v„ = v/ and <tf G £(v, v7);

• a user v G (/ is authorized for permission v7 £ P with respect to object v" 6 Ö at point

J G 'D if and only if there exists an acs-path v = v\, V2,..., v,,..., v„_i = v7, v„ = v7' such

39

~~

that v, € R for some /', vi,..., v, is an act-path, v,-,..., v„_ j is an u-path, (v„_ \, v„) <E PO

and d £ //(vV);

Our model also supports separation of duty (SoD) constraints. SoD prevents the occurrence of

fraud arising out of conflicts of interests in organizations [46]. Separation of Duty (SoD) comes in

two varieties. First one ensures that no user can be assigned to two conflicting roles. Second one

guarantees that no role can be assigned two conflicting permissions. We denote these two types of

SoD by using SEfi and SLf edges, respectively. Since SoD is a symmetric relationship, the SEfi

and SLf edges are bi-directional.

The strong model supporting SoD constraints is denned over the labeled graph G = (V,E:X,JLI),

where £ = UAUPAUPOURHaURHUUSD*USI? and V = UURUPUO. The strong model

allows specification of weaker forms of SoD constraints than those supported by the traditional

RBAC. Specifically, it allows one to specify the spatio-temporal points at which the SoD con-

straints are valid.

SoD Constraints for STARBACD+

User-Role Assignment: if far*) € SL? then there are no two edges (u,r) and (w,r;), correspond-

ing to some user u, where //(w, r) Pi fi(u, r1) n fi{r, r1) ^ 0

Permission-Role Assignment: if (p. p') € SEf then there are no two u-paths r = v\, V2,..., v„ =

p and r = I/, , v^,..., v^ = p' where //(v1? v„) n^,t/J n^{p.p') ^ 0

Pervasive computing applications require that our model support delegation. This is because

many situations require the temporary transfer or granting of access rights belonging to a user/role

to another user/role in order to accomplish a given task. For example, a doctor may delegate some

of his privilege to the nurse while he is temporarily unavailable. The entity that transfers or grants

its privileges temporarily to another entity is referred to as the delegator and the entity who receives

the privilege is known as the delegatee. The delegator (delegatee) can be either an user or a role.

Thus, we may have four types of delegations: user to user (U2U), user to role (U2R), role to role

(R2R), and role to user (R2U). When a user is the delegator, he can delegate a subset of permissions

that he possesses by virtue of being assigned to different roles. When a role is the delegator, he can

delegate either a set of permissions or he can delegate the entire role. We can therefore classify

delegation on the basis of role delegation or permission delegation. In the graphical representation

of STARBACD, we define a function v : (UUR) x (RuP) -> {UUR) that maps the delegation to

the delegator. The user to user role delegation is formalized as follows: (Delegate^2u) = U x &>

v(w, r1) = u' denotes the delegator who is a user authorized for role r1. The other types of delegation

can be formalized similarly.

Delegation in the Strong Model STARBACD

The strong model supporting delegation is defined over the labeled graph G = (r,£,X,^i),

where E = UA U PA U PO U RHa U RHU U DG and DG is the set of all delegation edges and V =

40

UURUPUO. We specify a sample delegation constraint as follows: If(u.r') 6 Delegatey2U and

v(w,r/) = u', then there exists an act-path vl = v\, v^,..., vn = r* such that jn{v\, v„)C\/j(uy) / 0

This says that when a user 1/ delegates role / to user w, then the delegation is possible only if the

spatio-temporal points for activating user w"s role r' overlap with those in which the delegation is

valid. For lack of space, we do not discuss all the other forms of delegation constraints, but refer

the reader to our paper [54].

4.2 Dynamic Model

Pervasive computing applications are dynamic in nature-the accessing entities may change, re-

sources requiring protection may be created or modified, and an entity's access to resources may

change during the course of the application. Such changes may result in unreachable or isolated

entities (such as, a normally authorized user being denied access because the user-role-permission

assignment has been removed), or the violation of separation of duty constraints. We need to

analyze the model to detect such problems. The following changes are possible in our model.

1. Entity and Relationship Removal The following entities can be removed: user, role, per-

mission, or object. Note that, this removal must be accompanied by deleting the relationships

associated with these entities.

2. Relationship Removal The following relationships can be removed: User-Role Assignment,

Permission Usage Hierarchy, Role Activation Hierarchy, Role-Permission Assignment, or

Permission-Object Assignment. This type of change can also cause an entity to become

isolated.

3. Relationship Creation A new relationship can be created between existing entities. The

relationship may be User-Role Assignment, Permission Usage Hierarchy, Role Activation

Hierarchy, Role-Permission Assignment, Permission-Object Assignment, SoD, or Delega-

tion. Creation of a new relationship may result in separation of duty violation.

4. Entity and Relationship Creation A new entity together with its corresponding new rela-

tionship can be created. The entity may be user, role, permission, or object. The relationship

may be User-Role Assignment, Permission Usage Hierarchy, Role Activation Hierarchy,

Role-Permission Assignment, Permission-Object Assignment, SoD, or Delegation depend-

ing on the type of entity being created. This type of change can cause the SoD constraints

violation.

5. Updating Spatio-Temporal Constraints The spatio-temporal constraints assigned to enti-

ties or relations can be changed. The entity may be user, role, permission, or object. The

relationship may be User-Role Assignment, Permission Usage Hierarchy, Role Activation

Hierarchy, Role-Permission Assignment, Permission-Object Assignment, SoD, or Delega-

tion. This type of change can cause either the infeasible path violation or SoD constraints

41

violation.

4.2.1 Algorithm for Detecting Isolated Entities

Preliminaries

We define an isolated entity as one which is unreachable and therefore cannot be used. The isolated

entity can be determined by considering the in-degree and out-degree of each vertex. The in-degree

and out-degree of the vertex defined with respect to STARB ACD+ model are given below.

In-degree In the labeled graph G = (V,E,\,M), where V = UURUPUOandE = UAUPAUPOU

RHaURHu, in-degree of a vertex v is the cardinality of the set {(v/, v)|((i/, v) € E) A (Ä.(v') n

X(v)nMv/.v)^0)}

Out-degree In the labeled graph G = (V.EXf), where V = UURUPUO and E = UAUPAU

POl)RHaURHu, out-degree of a vertex v is the cardinality of the set {(v, v/)|((v,v/) € £) A

Note that, we do not consider the separation of duty or the delegation edges since the modifications

to these edges do not change the isolated entities.

The Detection Algorithm

The different types of isolated entities are detected as follows:

User For v € U, v is the isolated entity iff out-degree(v) = 0

Role and Permission For v e RUP, v is the isolated entity iff (in-degree(y) = 0) V (out-degree (v) =

Object For v € O, v is the isolated entity iff in-degree(v) = 0

To get the in-degree and out-degree, we have to count the number of edges connected to each

vertex. This can be done in 0(VE) time. However, we can improve this by recording the in-degree

and out-degree of each vertex. Each time the vertex or the edge is added to or removed from the

graph, we update the in-degree and out-degree of the related vertices. Since we do not allow the

existence of multiple edges between each pair of vertices, this update process can be done in 0(V).

After we have such values recorded for every vertex, the detection can be done in 0(V).

4.2.2 Algorithm for Detecting Infeasible Paths

Preliminaries

In STARBACD model, a user u is authorized for permission p through role r with respect to object

o iff there exists a valid acs-path which contains w, r, p, and o. We define an infeasible path as an

invalid acs-path i.e. an acs-path which cannot grant the authorization of any permission to user.

42

The Detection Algorithm

To detect the infeasible path, we assume that we store all source vertices in a list. Each member

in the list maintain its own depth-first search (DFS) tree. To generate these trees, we perform DFS

from each source. While performing the DFS, we check if there is any spatio-temporal conflicts

between the nodes or edges. If there is any conflict, then there exists an infeasible path. This

step could be done in O(VE). After the process we will have set of the initial DFS trees which

consists of feasible paths. Next for each update operation of the graph, we ensure that the following

conditions are satisfied:

• Only user vertices can be the root of each subtree.

• Only object vertices can be the leaf node of each subtree.

For each update operation of the graph, we proceed as discussed here. If any new entity v and its

corresponding relationship have been added to the initial graph, we consider the following:

• If v is a new source, we perform DFS from v to create all of its acs-paths. While perform-

ing the DFS, we check whether the spatio-temporal constraints between the source and its

successors are satisfied. If so, we add v to the source list and maintain its pointers to its

immediate successors. If not, then this v will create an infeasible path. This step can be done

in 0(E) time.

• If v is a new intermediate vertex, we perform DFS from each source. While performing the

DFS, we check whether all spatio-temporal constraints are satisfied. If so, we create pointer

from v's immediate predecessors to v, and from v to its immediate successors. If not, then

this v will create an infeasible path. This step can be done in 0(VE) time.

• If v is a new sink, we perform reverse DFS from v. While performing the reverse DFS, we

check whether the spatio-temporal constraints between v and its predecessors are satisfied.

If so, we create pointer from its immediate predecessors to v. If not, then this v will create

an infeasible path. This step can be done in O(E) time.

If any existing spatio-temporal constraint has been updated in the initial graph, we consider the

following:

• If the update is done on A.(v), where v is a source, we perform DFS from v to each of its acs-

path. While performing the DFS, we check whether the spatio-temporal constraints between

the source and its successors are satisfied. If so. we update X(v) to the new one. If not, then

this update will create an infeasible path.This step can be done in 0(E) time.

• If the update is done on /i(v, v7), where v is a source, we perform DFS from v to each of

its acs- path which contains v1'. While performing the DFS, we check whether the spatio-

temporal constraints between the source and its successors are satisfied. If so, we update

43

^(v,^) to the new one. If not, then this update will create an infeasible path.This step can be

done in 0(E) time.

• If the update is done on X(v) or //(v,v/), where v is an intermediate vertex, we perform

DFS from each source. While performing the DFS, we check whether all spatio-temporal

constraints are satisfied. If so, we update X(v) or //(v,\/) to the new one. If not, then this

update will create an infeasible path. This step can be done in O(VE) time.

• If the update is done on A.(v), where v is a sink, we perform reverse DFS from v. While

performing the reverse DFS, we check whether the spatio-temporal constraints between v

and its predecessors are satisfied. If so, we update A.(v) to the new one. If not, then this v

will create an infeasible path. This step can be done in 0(E) time.

• If the update is done on p(v, v'), where v7 is a sink, we perform DFS from v/ to each of its acs-

path which contains v. While performing the DFS, we check whether the spatio-temporal

constraints between the source and its successors are satisfied. If so, we update p(v,V) to

the new one. If not, then this update will create an infeasible path. This step can be done in

0(E) time.

4.2.3 Algorithm for Detecting SoD Violations

Preliminaries

In STARBACD model, SoD can be violated in one of two ways. First, if (r\,ri) G SL^, and there

exists acs-paths from u\ to r\ and u\ to r-i. Or, if {p\,pi) G SLf, and there exists u-paths from r\

to p\ and r\ to pi-

The Detection Algorithm

Consider the dynamic case where edges can be added and deleted from the graph. The naive

algorithm can be done by performing the reverse DFS on each (v, V) G SE^USD*3 of the modified

graph to find the common predecessor. This could be done in 0(k\E\) time. We can apply the

same algorithm for the case where the spatio-temporal constraint is updated in the graph too.

Our algorithm which will be proposed next is a special case of the algorithm to find the com-

mon predecessors in a Directed Acyclic Graph (DAG). In our algorithm, each entity except a user

will maintain a list of users authorized for it by performing the DFS from each user. Only users

satisfying the spatio-temporal constraints will be added to the list. To determine whether the SoD

(v,i/) G SLfuSrfi is violated, we compare whether u G U is in the authorized users list of both v

and v7, and X(u) n/i(v,\/) ^ 0. If this evaluates to true, then there exists an SoD violation. Since

the size of each list cannot exceed the number of user vertices, the evaluation time is 0(\U\). Let

k be number of SoD edges. The detection time for the static case where no adding or removing

of edges is allowed, is equal to 0{k\U\). To label all vertices it takes 0(|£||£/|) time, and yields

the total running time in the static graph equal to 0((k+ \E\)\U\). However, in the case where all

edge modifications are of same type, i.e., only either adding edges or deleting edges are allowed,

we can improve the running time by applying the following algorithm:

• When only adding edges is allowed, each time a new edge is added, we update only the

label list of vertices belonging to the graph portion that have not been reached before by

using the incremental-DFS described in our paper [54], All updates take 0(|£||£/|) time,

and detecting whether the SoD is violated take 0(\U\) per SoD edge. This yields the total

processing time equal to 0((k+ \E\)\U\).

• When only removing edges is allowed, we update only the label list of vertices that becomes

unreachable by some user u after the edge removal. Using our proposed algorithm [54], the

removal of an edge takes 0(|£|/og|K|) time for relabeling for each user vertex, and detecting

whether the SoD is violated take 0(\U\) per SoD edge. This yields the total processing time

equal to 0((*+|£|/og|K|)|*/|).

For the detail on graph specification updating algorithm and proof of correctness, we refer to our

paper [54].

4.3 Military Example

We describe a military application where the STARBACD^ can be applied. Let us assume that

in the battlefield, each troop consists of military staff with the following responsibilities: The

Intelligent Officer is responsible for the process of acquiring enemy information, interpreting it

and then sending it to the Soldier in his troop. The Clinical Officer is in charge of monitoring the

health information of his troop, evaluating the information to check whether the trooper's life is in

danger, and sending the SOS signal to the commander to get the proper help. The list of entities

and the spatio-temporal relationships are shown in Tables 4.1 and 4.2 respectively.

The graph-theoretic representation is shown in Figure 4.1(a). We will only describe parts of

this configuration. User Alex (u\) can create session at any time and at any place as per Row 1

of Table 4.1. He is assigned the role of Intelligence Officer (r\) which can be activated at any

place at any time. During this time and at this location, he has permission (p\) to access the

Surveillance Sensor Information (o\). Since Intelligence Officer is senior to Soldier role in the

permission usage hierarchy, he can also get the permission to maneuver the Tank. However, this

permission is allowed only when the hierarchy is enabled on the battlefield. During the war, Alex

gets injured and cannot pursue his mission. So, his role must be delegated to Charlie until he fully

recovers. This new graphical representation is shown in Figure 4.1(b) where the delegation edge

is represented by the dashed arrow. However, this delegation should not be allowed because our

algorithm detects a violation of separation of duty constraint in the presence of this delegation.

45

NAME DESCRIPTION SPATIO-TEMPORAL DOMAIN (A.) 1
u\ Aiex [Universe, Always]

u2 Ben [Universe, Always]

"3 Charlie [Universe, Always]

n Intelligence Officer [Universe, Always]

n Soldier [Field, Always]

rz Clinical Officer [Universe, Always]

P\ Access Surveillance Sensor [Universe, Always]

Pi Maneuver the Vehicle [Field, Always]

Pi Access Vital Sensor [Universe, Always]

0] Surveillance Sensor Information [Universe, Always]

°2 Tank [Field, Always]

°3 Health Information [Universe, Always]

Table 4.1: STARBACD entities for the military example

NAME DESCRIPTION SPATIO-TEMPORAL DOMAIN (/i) 1
(«i»n) User-Role Assignment [Universe, Always]

("2,r2) User-Role Assignment [Field, Always]

(W3,n) User-Role Assignment [Universe, Always]

(run) Permission Usage Hierarchy [Field, Always]

(r\,Pi) Permission-Role Assignment [Universe, Always]

(riiPl) Permission-Role Assignment [Field, Always]

[r^p-i) Permission-Role Assignment [Universe, Always]

(Pi.Pl) Separation of Duties [Universe, Always]

(PliPi) Separation of Duties [Universe, Always]

(P\,0]) Permission-Object Assignment [Universe, Always]

(P2,02) Permission-Object Assignment [Field, Always]

(P3,03) Permission-Object Assignment [Universe, Always]

Table 4.2: STARBACD relationships and constraints for the military example

4.4 Conclusion and Future Work

We present a graph-theoretic representation of our spatio-temporal role-based access control model

that allows one to visualize and reason about spatio-temporal access control. The dynamism in-

herent in pervasive computing applications may cause the access control configuration to change

while the application is executing. Towards this end, we show how to perform incremental analy-

sis to give assurance that security breaches do not occur as a result of changing the access control

configuration. Our analysis makes clever use of data structures and achieves good time complexity

results.

Pervasive computing applications will typically be modeled as workflows. In future, we plan to

extend our graph-theoretic formalism to represent the access control configuration of workflows.

46

■

,-%

(a) Configuration before delegation (b) Configuration after delegation

Figure 4.1: Access control configurations for the military example

We also plan to investigate the interaction of workflow and authorization constraints where the
access control model is updated during workflow execution.

47

Chapter 5

A Trust Model for Pervasive Computing
Applications

Traditional security policies and mechanisms assume a binary notion of trust - either an entity

is trusted completely or not at all. However, such a simplistic notion of trust is not suitable for

pervasive computing applications where there are interactions among different entities, not all of

which are equally trustworthy. The reason is that these binary models of trust fail to correctly

assess trust levels of groups in which some of the entities are trusted while others are not. The

nature of interactions, often times, depends on the trust relationships between the entities. Thus,

it is important to formalize and capture the trust relationships which will allow us to compare

them and compose them to make decisions. Moreover, since pervasive computing applications are

dynamic and involves interacting with unknown entities, the trust model should be able to represent

and argue about uncertainty. The trust model should also be interoperable as pervasive computing

applications often span multiple organizations.

In this chapter, we present the highlights of a new trust model that we propose for pervasive

computing applications. We begin by defining trust as a relationship between a truster and a trustee

with respect to a given context. We identify the factors on which trust depends and show how to

assess these factors and compute the value of trust relationship. Subsequently, we formalize the

notion of context that allows us to compare trustworthiness across different domains and also

enables one to extrapolate trust in the absence of information in a given context.

The rest of the chapter is organized as follows. Section 5.1 presents an overview of our trust

model. Section 5.2 formalizes the relationship among different contexts which is needed to make

the trust model interoperable and to reason about trust in the absence of information in a given

context. Section 5.3 concludes the chapter with some references to future work.

5.1 Overview of Trust Model

Trust is a relationship between two entities, a truster A and a trustee B, with respect to some context

c. The trust relationship between a truster and a trustee is never absolute. A truster trusts a trustee

with respect to specific capabilities, such as providing a service or keeping a secret. This represents

our notion of trust context.

We start by representing the trust relationship (A —► B)t as a 3 x 3 matrix. The rows of the

matrix correspond to the three parameters, namely, experience, knowledge, and recommendation,

on which trust depends. (The formal definitions of these parameters and methods for evaluating

them are given later.) We use Josang's opinion model[26] to represent each of these parameters.

Each parameter is a (b,d,u) triple, where b means belief, d specifies disbelief, and u signifies

uncertainty about the parameter to evaluate the trust. These three terms constitute the columns of

the trust matrix.

The three parameters may not have equal importance for evaluating trust. The trust policy vec-

tor specifies the normalization factor that gives the relative weight of each parameter. Applying the

normalization factor to the trust relationship gives a normalized trust relationship. The normalized

trust relationship between truster A and trustee B pertaining to context c at time / is formally de-

noted as (A —♦ B)f. It specifies ^'s normalized trust on B at a given time / for a particular context
A A. A

c. This normalized trust is represented as a single triple (A^B, Ad
c

B, A^B)-

Trust is evaluated on the basis of three factors, namely, experience, knowledge, and recommen-

dations. In the following subsections, we briefly describe how each of these factors are computed.

5.1.1 Evaluating Experience

Definition 1 The experience of a truster about a trustee is defined as the measure of the cumulative

effect of a number of events that were encountered by the truster with respect to the trustee in a

particular context and over a specified period of time.

We model experience in terms of the number of events encountered by a truster, A, regarding a

trustee, B in the context c within a specified period of time [to,tn]. We assume that A has a record of

the events since time to. An event can be positive or negative or neutral. Positive events contribute

towards increasing the belief component of experience. Negative events increase the disbelief

component of experience. Neutral events increase both belief and disbelief components equally.

No experience contributes towards the uncertainty component of experience. In the following, we

describe how to calculate the experience that a truster A has about trustee B with respect to context

c. This is formally denoted as AE
C

B — (be, dE, uE) where bE, dE, uE represent belief, disbelief and

uncertainty components respectively with respect to the experience that A has towards B.

We use the temporal notation [/,,/y] for describing a time interval where /, ^ tj. The time

49

interval [/,,r7] describes the set of consecutive time instances where tt is the first instance and tj

is the last one. We denote the time period of interest as [to,t„]. This is divided into a set of/?

sub-intervals [/o,fi], [t\ ,'2], ■ ■ -, [tn-\,t„]. The intervals overlap at the boundary points only. That is,

ViJ,k,l e N, where /, j\ k, I are all distinct, [thtj] n [/*,//] = 0. Also, ViJ,k G N, where /, j\ k are

all distinct, [/,-,/y] D [tj,tk] = {tj}- That is, all instances, except to and /„, that occur at the boundary

of an interval is a part of two intervals. We refer to the interval [/*_!,/*] as the tfh interval where

0<k<n- I.

We assume that events occur at time instances. The function £T, referred to as the event-

occurrence-time function, returns the time instance /, at which a given event e^ occurred. Formally,

ET(ek) = tj. Moreover, if ET(ek) = tj and tj G [/,,/*] and j ^ iAj ^ &, then e* is said to occur in

the interval [/,-,/*]. For two consecutive intervals [r,-,/y] and [/y,f*] if ET(ei) = tj then we assume e*

occurs in the interval [tjJ/].

Let the experience acquired at interval 1, 1 < / < n - 1, be represented as (£,-,dx,u{) where 6„

dt, Uj denotes belief, disbelief, and uncertainty respectively. When no event occurs during some

particular time interval i, this corresponds to the fact that w, = 1 and bj = d, = 0. The next case is

when events occur at the interval i. Let Pj denote the set of all positive events, 0} denote the set

of all negative events, and TV, denote the set of all neutral events that occur in the interval i. Each

positive event increases 6/, each negative event increases */,-, and each neutral event increase both bi

and dj. The values for 6Z, dj and w, are computed as follows. bt = rpT^rpT^jm, d{ = |/?rT ■ JiijT^i, and

Ui = 0. The intuition is that each positive event contributes to the belief component by ij>.|+ip.i+w.|-

Similarly, each negative event contributes to the disbelief component by I/>.|+IQ.I+|JV.|- Each neutral

event contributes equally to both belief and disbelief component by |p,+[I'/L.|. Moreover, since

events have occurred in the interval, the uncertainty component is 0.

Note that, in real world, events occurring in the distant past has less effect than those that have

recently occurred. More importance must be given to recent events than past ones. To accommo-

date this in our model, we assign a non-negative weight w, to the fh interval such that w, > w,

whenever j < /, ij £ N. We use the formula w,1 = £ Vi = 1,2,..., n where S = "^ ■ to evaluate

weights of the intervals, satisfying the above condition.

The experience of A about B in context c is expressed as, jEg = (bß, öfc, UE). The values of

b£,d£, and UE are given by bg = X?=1 *>i * £/, «fe = £"= 1 wi * dt, and UE = £/L, u>; * ut respectively.

5.1.2 Evaluating Knowledge

Definition 2 The knowledge of the truster regarding a trustee for a particular context is defined as

a measure of the condition of awareness of the truster through acquaintance with, familiarity of or

understanding of a science, art or technique.

The knowledge factor is made up of two parts: direct knowledge and indirect knowledge.

Direct knowledge can be formally assessed or evaluated. Indirect knowledge is more subjec-

tive. Direct knowledge can be evaluated through credentials and certificates. Indirect knowl-

edge can be obtained by reputation. Direct knowledge and indirect knowledge are associated

with triples K& = (&£>, do, up) and Kj = (b/. dj. uj) respectively. Each piece of direct (in-

direct) knowledge is categorized into positive, negative, or neutral. The elements of the triple
(bo, dD, uo) can be computed as follows. bD = ^su.vc di^^wi^^cu^di^ow.cd^

do = #ncga'lvcd?^^rd^IXto0W'^-If there is ™yd,rect knowled8e *">=°> other"
wise UD — 1 • Similar formulas can be written for indirect knowledge.

The weight that a truster assigns to each of these knowledge types depends on the problem

context. The truster assigns the relative weights Wß,w/ for these two types of knowledge, where

WD, w/ € [0,1] and WQ + WJ = 1. The weights are determined by the underlying policy. Truster A's

knowledge about trustee B in the context c is computed as

AK
C

B = wDxKD + w/xKj

= wDx(^D,^D,wD)-hw/x(^/,J/,w/)

= (£*, dz, UK)

where OK = *>D x bo + w/ x bi, 4 = M,Dx4 + w/x du w* = WD
X
 "D + *7 x "/•

5.1.3 Evaluating Recommendation

Definition 3 A recommendation about a trustee is defined as a measure of the subjective or objec-

tive judgment of a recommender about the trustee to the truster.

The truster A may obtain a recommendation from multiple recommenders regarding trustee B

in the context c. The goal is to generate a triple (b,d,u) from each recommender and use these to

get (bR,dR,UR) which represents the recommendation that A has received about B with respect to

context c. First, we give the details about how the triple is computed for each recommender. Later,

we describe how these results are aggregated.

Let M be one such recommender. The recommender M may or may not have a trust relationship

with trustee B regarding context c. The truster A can provide a questionnaire to the recommender.

The recommender is allowed to use the values +1, -1, 0, or ± in filling this questionnaire. The

value +1 indicates belief, -1 indicates disbelief, 0 indicates neutral, and _L indicates unknown.

The number of _Ls with respect to the total number of values will give a measure of uncertainty.

The ratio of the number of +ls together with half the number of 0s to the total number of values

gives the value for belief. The ratio of the number of-Is together with half the number of 0s to

the total number of values gives the value for disbelief. If the recommender does not return a

recommendation, the truster uses the triple (0,0,1) as a recommendation from M.

51

The truster A will have a trust relationship with the recommender M. The context of this trust

relationship will be to act "reliably to provide a service (recommendation, in this case)". This trust

relationship will affect the opinion of the recommendation provided by the recommender. The

truster scales the recommender's opinion about the trustee with this trust value. Scaling the rec-

ommendation score based on the trust relationship between the truster and the recommender has

one important benefit. Suppose that the recommender tells a lie about the trustee in the recom-

mendation in order to gain an advantage with the truster. If the truster does not have belief on the

recommender to a great degree then the belief on the recommendation will be low with the truster.

Note also that if the truster disbelieves a recommender to properly provide a recommendation, it

will most likely not ask for the recommendation.

The trust relationship that truster A has with trustee M in the context of providing a recom-

mendation is represented as a 3 x 3 matrix. The rows of the matrix correspond to experience,

knowledge, and recommendation and the columns correspond to belief, disbelief, and uncertainty.

This matrix is normalized as outlined in Section 5.1.4 and converted into a triple of the form

(b,d,u). This triple will be used for the scaling operation.

To do this scaling, we borrow the concept of "discounting" proposed by Josang [27, 28]. Ac-

cording to his proposition, if the recommender M disbelieves the trustee B or is uncertain about

B, then A also disbelieves B or is uncertain about B to the extent scaled down by A ?s belief on M.

Also, A's disbelief and uncertainty about Afs opinion contribute towards Ays uncertainty about B.

If M sends the triple M^B*. MJB, M^B as a recommendation about B, and A has the trust on M as

{A^M, A^M-, AUM), then the recommendation MR
C

B of a recommender M for an entity B to the truster

A in a context c is given by OA/^, AM^, AMU*B). The values of AMbR, AM^B^ AM^B computed as

per Josang's formula is:

AMbB=A bM*Mbß

AMdB=AbMxMdB

AMVß -A <*M +A "M +A &M * M Uß

Recall that the truster A may get recommendations about the trustee B from many different

recommenders. Then ^'s belief on the recommendation about B is the average of the belief values

of all recommendations and A's disbelief is the average of the disbelief values of the recommen-

dations. The same is true for A's uncertainty about the recommendations. Therefore, if \|/ is a

group of« recommenders then AybR = ^'/X AydR = ^'/^ and AyUR = ^'^ B. Hence, the

recommendation component is expressed by the triple (AybR, A\?dR, A\?UR)-

52

5.1.4 Normalization of Trust Vector

Having determined the triples for each component of trust we specify the simple trust relationship

between the truster A and the trustee B in a context c at time / as

(bE dE uE \

bK dK uK (5.1)

AybR AydR AyUR)

Given the same set of values for the factors that influence trust two trusters may come up with

two different trust for the same trustee because they may assign different weights to the different

factors that influence trust. Which particular component needs to be emphasized more than the

others, is a matter of trust evaluation policy of the truster. The policy is represented by the truster

as a trust policy vector.

Definition 4 The trust policy vector, AW§, is a vector that has the same number of components

as the simple-trust vector. The elements are real numbers in the range [0,1] and the sum of all

elements is equal to 1.

The elements of this vector are weights corresponding to the parameters of trust relationship. Let

(A —* B)t be the simple trust relationship between truster A and trustee B in context c at time /. Let

also AWg = flPJfj WK, WR] be the corresponding trust evaluation policy vector elements such that

WE + WJC + WR= 1 and WE, W&, WR 6 [0,1]. Therefore, the normalized trust relationship between

a truster A and a trustee B at a time / and for a particular context c is given by

(A-^B)¥ = AWBx{A-^B)t

(bß dg us

bK dK uK

AybR AydR AyUR

= {A&B, Ad°B, AUß)

where Abc
B = WExbE + WKxbK + WRXAybR, AdB = WExdE + WKxdK + WRXAydR, Au

c
B =

WE X US + WKXUK + WR XAyUR.
A A A

It follows from above that each element AbB, Ad%, AU°B °fme normalized trust relationship lies

within [0,1] and Abg + AdB + AUß = I.

5.2 Reasoning about Trust Relationships in Different Contexts

The model we have described so far has two shortcomings that needs to be overcome if the model

is to be useful for real-world applications. First, it is not possible to compute a useful trust vector if

53

the truster does not have any experience, knowledge, or recommendation about a trustee in a given

context. The model returns the vector (0,0,1) - total uncertainty. Second, the model developed

so far can reason about trust relationships only with respect to a given context. In other words, it

allows trust vectors to be compared only when there is an exact match on the context. These two

shortcomings must be removed in order to make the trust model useful for pervasive computing

applications. We remove these problems by formalizing the notion of context and describing the

relationships that exist between different contexts.

Definition 5 A context C\ is represented by a set of keywords denoted by KeywordSetCr

Each keyword in KeywordSetCi is used to describe the context Q, The keywords in KeywordSetCi

are semantically equivalent because they express the same context. For each context C, we require

that the KeywordSetc should be non-empty and finite. For any two distinct contexts C and C\

KeywordSetc C\ Keyword Set c> = {}. In other words, any keyword belongs to exactly one context.

An example will help illustrate the notion of contexts. The context age can be expressed by the

keywords { age,year Of Bin h }.

Consider the two contexts doing a job and doing a job well. Modeling them as distinct concepts

increases the total number of contexts that must be managed. To solve this problem, we specify

doing a job as a context and associate a set of values with it. The values in this case will be

{badly\ neutral, well}. Using these values, we can specify different conditions on the context.

Each of these conditions represent a derived context. To obtain a derived context from the context

Ci, each keyword ft, where k G KeywordSetCn must be associated with a domain D* that defines the

set of values associated with the keyword. The formal definition of derived context appears below.

Definition 6 A derived context <DCj is one that is specified by a condition A' op v defined over a

context C, where k G KeywordSetCi and v G At and op is a logical operator compatible with the

domain of D*.

To check whether two derived contexts specified using conditions on different keywords are

equivalent, we need the notion of translation functions.

Definition 7 The translation function associated with a context pi, denoted as TFCi, is a total func-

tion that takes as input a condition kopv(k£ Keyword Set Ci) and a keyword k' (k' G KewordSetCi)

and produces an equivalent condition defined over keyword k'. This is formally expressed as fol-

lows. TFCi : CondCl x KeywordSetCi —► CondCl where CondCi is the set of all valid conditions

specified over the keywords in Keyword Set Cr

Since the translation function is total, for every given valid condition and keyword there exists

an equivalent condition defined on the given keyword. Several steps are involved in developing

the translation function. To express k op v in terms of//, we need to first convert the value k to an

54

equivalent value that is in the domain of//. This step is performed by conversion functions which

convert the value of one keyword to an equivalent value of another keyword. The second step is to

convert the operator op into an equivalent operator op' that is suitable for the domain of A-7. The

definition of the conversion function together with the domain of the keyword can determine how

the operator must be changed.

Consider the two keywords age and yearOfBirth. Suppose we want to translate age > 18 to an

equivalent condition defined over yearOfBirth. The first step is to convert age = 18 to an equivalent

value defined over yearOfBirth. The function that converts age to yearOfBirth will be specified

as: yearOfBirth = currentYear - age. For age = 18, this function returns yearOfBirth = 1987.

Since yearOfBirth and age are inversely related, (that is, age increases as yearOfBirth decreases)

the operator > is inverted to obtain <. The results obtained by the TFCi function in this case will

beyearOßirth< 1987.

5.2.1 Relationships between Contexts

We now describe two kinds of relations that may exist between distinct contexts. One is the gen-

eralization/specialization relationship existing between related contexts. The other is the composi-

tion relationship between possibly unrelated contexts.

Specialization Relation

Distinct contexts may be related by the specialization relationship. The specialization relation is

anti-symmetric and transitive. We use the notation Ci C Cj to indicate that the context C, is a

generalization of context Cj. Alternately, context Cj is referred to as the specialization of context

C$. For instance, the contexts makes decision and makes financial decisions are related by the

specialization relationship, that is, makes decisions C makes financial decisions. Also, makes

financial decisions C makes payment decisions. By transitivity, makes decisions C makes payment

decisions.

Each specialization relationship is associated with a degree of specialization. This indicates

the closeness of the two concepts. For instance, makes payment decisions is a specialization of

makes decision, and makes payment decisions is also a specialization of makes financial decisions.

However, the degree of specialization is different in the two cases, makes payment decision is

closer to makes financial decision than makes decision. The degree of specialization captures this

difference. Since two contexts related by specialization will not be exactly identical, the degree

of specialization will be denoted as a fraction. The exact value of the fraction will be determined

using domain knowledge.

55

Composition Relation

Specialization captures the relationship between contexts that are related. Sometimes unrelated

contexts can be linked together using the composition relation. We now describe this composition

relation. A context in our model can either be an elementary context or a composite context. An

elementary context is one which cannot be subdivided into other contexts. A composite context is

one that is composed from other contexts using the logical and operation. The individual contexts

that form a composite contexts are referred to as the component contexts. A component context

can either be composite or elementary.

We use the notation Ct <3C Cj to indicate that the context C\ is a component of context Cj. In

such cases, C\ is referred to as the component context and Cj is the composite context. For instance,

we may have the component contexts secure key generation and secure key distribution that can be

combined to form the composite context secure key generation and distribution. This is denoted

as secure key generation <C secure key generation and distribution.

Sometimes a composite context & may be composed from the individual contexts Cj, Ck and

Cm. All these contexts may not contribute equally to form &• The degree of composition captures

this idea. A degree of composition is associated with each composition relation. Since two contexts

related by composition will not be exactly identical, the degree of composition is denoted as a

fraction. The sum of all these fractions equals one if d is composed of Cy, £"*, and Cm only. If

d is composed of Cjt Ck, and Cm and also other component contexts, then the sum of fractions

associated with Cu Ck, and Cm must be equal to or less than one. The exact value of the fraction

representing the degree of composition will be determined by domain knowledge.

Context Graphs

The specialization and the composition relations can be described using one single graph which

we refer to as the context graph. Each node «, in this graph corresponds to a context. There

are two kinds of weighted edges in this graph: composition edges and specialization edges. A

composition edge (w/.wy), denoted by a solid arrow from node «/ to node nj, indicates that the

context represented by node n(is a component of the context represented by node rtj. The weight

on this edge indicates what percentage of the component context comprises the composite context.

A specialization edge (np,nq), shown by a dashed arrow from node np to node nq, indicates that

the context represented by node np is a specialization of the context represented by node nq. The

weight on the edge indicates the degree of specialization of a context.

Unrelated contexts correspond to nodes in different context graphs. Each context corresponds

to only one node in the set of context graphs. We denote the context graph associated with context

d as CQ c . The formal definition of a context graph is as follows.

Definition 8 A context graph CQ = (fl£, £c U £5) is a weighted directed acyclic graph satisfying

56

the following conditions.

• 9£ is a set of nodes where each node w, is associated with a context Q and is labeled with

Keyword Set Cr KeywordSetCi is the set of keywords associated with the context C\.

• The set of edges in the graph can be partitioned into two sets £c and £5. For each edge (nur\j)

£ £c, the context & corresponding to node w, is a component of the concept Cj corresponding

to node w;. The weight of the edge (w/,wy), denoted by w(«,,«y), indicates the percentage

of component context that makes up the composite context. For each edge (rii.nj) € £>-, the

concept Cj corresponding to node w, is a specialization of concept Cj corresponding to node

ffj. Here again the weight of the edge («,,/fy), denoted by w(/i,-7/i7), indicates the degree of

specialization.

4/5 ---'""
Symmetric key
establishment

1/3 J I vl/3

Key
generation

Key
distribution

Key
.i<;rcc!*icni

1 A, M %,
»Vj

Manual key
distribution

Electronic key
distribution

Cryptographic key establishment

Vr^^^—
4/5

• Dotted lines represent generalization-specialization' relationship

* Solid lines reprcsct 'composition-component' relationship

Asymmetric key
establishment z 1/2

Key
generation

Key
distribution

l'"3 •-„2/3

Stabe public
•r.bution

Ephemeral public
key distribution

Figure 5.1: Specialization and composition relationships

Figure 5.1 gives an example of a context graph that is associated with the context cryptographic

key establishment. The solid arrows in this graph indicate composition relationships and the dashed

arrows indicate generalization/specialization relationships. The context cryptographic key estab-

lishment can have two specializations, namely, symmetric key establishment and asymmetric key

establishment. The weight on the edge connecting this symmetric key establishment with crypto-

graphic key establishment indicates the degree of specialization. For instance, if symmetric key

establishment is very closely related to key establishment, the degree of specialization may be la-

beled as j. Similarly, the edge connecting asymmetric key establishment to key establishment may

be labeled as |. Each of these specific contexts is a composition of some component contexts.

Generation and distribution of symmetric keys has three components - key generation, key distri-

bution, and key agreement. A weight of ^ can be assigned to each of these components contexts.

Similarly, generation and distribution of asymmetric keys can have components key generation and

key distribution with weights 5 each.

57

A component context can also be a generalization of some specialized contexts. In the above

example the context key distribution has two categories - manual key distribution and electronic

key distribution. Similarly key distribution in asymmetric keys can be thought of as generalization

of static public key distribution and ephemeral public key distribution.

5.2.2 Computing the Degree of Specialization and Composition

Consider two contexts Q and Cj where Ci C Cj, that is, Cj is a specialization of C,. The degree of

specialization is computed as follows. Let «,, nj be the nodes corresponding to contexts C, and Cj

in the weighted graph. Let the path from w, to nj consisting of specialization edges be denoted as

(w/,n/+i, «,-+2, • • • inj-1»*/)- The degree of specialization = TE^wfapi np+\). This corresponds to

our notion that the similarity decreases as the length of the path from the generalized node to the

specialized node increases. Note that, in real world there may be multiple paths from Ci to Cj. In

such cases, it is important that the degree of specialization yield the same values when any of these

paths are used for computation.

Consider two contexts C, and Cj such that Cj is a component of C,. Degree of composition

captures what portion of C, is made up of Cj. The degree of composition is computed as follows.

Let w„ nj be the nodes corresponding to contexts Ci and Cj in the context graph. Let there be

m paths consisting of composition edges from w, to nj. Let the ^th path (1 < q < m) from «, to

nj be denoted as {nj,niq+) ,niq+2, ■ • ;»J>yf-l»*/)- The degree of composition = X™=1 (w(w;,w/)?+]) x

5.2.3 Relationships between Context Graphs

Different information sources may use different context graphs. Comparing information or com-

bining information that uses different context graphs may not give correct results. Before pro-

ceeding with the comparison of information obtained from different sources, the context graphs

of these sources must be merged. Note that, sometimes context graphs cannot be merged because

they contain conflicting information. To understand why this happens, we first need to elaborate

on the relationships that can exist between a pair of context graphs. Two context graphs can be

related by any of the following relationships: (i) equality, (ii) unrelated, (iii) subsumes, and (iv)

incomparable.

Intuitively, two context graphs are equal if they have the same set of nodes, composition edges,

and specialization edges. Moreover, each of these edges must have identical weights in the two

graphs. Sometimes two context graphs are unrelated. They do not have any common context. It is

conceivable that these graphs will be used for different situations. Often times two context graphs

are comparable but one has more information than the other. In such cases, the context graphs are

related by the subsumes relation. Often times two context graphs, neither of which subsumes the

51

other, may be comparable. Such graphs contain different but related information. Moreover, they

never have any conflicting information. Such graphs can be merged without human intervention.

Two context graphs that are not unrelated are incomparable if they are not comparable. Incompara-

ble graphs occur when the underlying assumptions are different. Since the conflicts are generated

because of the differences in the underlying assumptions, they cannot be resolved without human

intervention.

Secure
communication

1/2 S V 1/2

Message
encryption

Channel
establishment

CG CG2

Figure 5.2: Unrelated context graphs

vi
Mange
bustsea

Manage
Wttm Jc«-Oun!s

1/ \a

Manage
loan

\U-u\v:
HHfiDfi

accounts accounts

vy^ -% s 1/3

buying/selling
stocks

V.I:.I;-:

savings
MOOMI

Figure 5.3: Context graphs having subsumes relation

When a truster A cannot determine the values related to his trust relationship with trustee B

for a context C, the values can be obtained from one or more related contexts, say, C\. We use

the component values of the individual parameters recommendation, experience, and knowledge

from C, and use these to compute the trust vector for C. Note that, a context C may be related to

many other contexts, say, C„ fy and Ck- Here it is important to choose the closest related context

from this set and use it for extrapolation. The details of reasoning about trust in the presence of

incomplete information appears in our related papers [40, 41].

59

Manage
business

Manage
business

UÄ^
1/3

1/6 t/3,

*!■

^3

Interact
with partners

Manage
investcments

Manage
bank accounts

Interact
with partners

Manage
investcments

Manage
bank accounts

{ny S * s \n 1/2
*

rr
s

^\
1/2

 i

Manage real-estate
related investments

Manage
stock-related
investments

Manage real-estate
related investments

Manage
stock-related
investments

CG, CG-

Figure 5.4: Incomparable context graphs

5.2.4 Combining Trust Vectors for Collaborations

Ad hoc collaborations such as those frequently occurring in pervasive computing applications,

typically involve many cooperative entities in a relationship within a specific context. Combination

of trust is needed for the interoperability of these cooperating agents. Whenever a group of agents

are working together, combining their individual trust relationships is necessary to have an idea

about the expected behavior of the group. Keeping this in mind we define combination operators

for trust relationships. Different possibilities like one-to-many, many-to-one, and many-to-many

relationships are addressed. We also formalize the effect of reconfiguration of these groups on the

corresponding trust relationships. As in the comparison operation between trust relationships, we

assume that the contexts of the trust relationships are the same. If needed and possible, we can

extrapolate trust relationships as per section 5.2.3.

Trust relationship between a truster and a group of trustee

In real life, we often encounter situations where we have to take decisions based on information

coming from different sources. Consider the scenario where an entity has existing trust relation-

ships with different service providers for a particular service. The truster expects some service

which is provided collectively by the service providers. The truster has some expectation from

each individual provider. To have an idea about the service provided by the group, the combined

trust of the service providers needs to be estimated. Therefore, the receiver needs a mechanism

to combine the existing trust relationships to estimate an initial composite trust relationship. The

group of service providers is considered as a single entity (trustee). Once the combination is done,

the truster no longer considers the trust relationships with individual trustee. The truster begins

with the combined group as a single entity and subsequently a trust relationship with the group

evolves. We use the disjunction operator of subjective logic to define an initial trust relationship

60

between a truster and the group.

Assume a truster A has trust relationships T = (A -^-* B)^n = {bT,dT,uT) and V = (A -^-»

C)£ = (b'P\d-Tl\u-Tf) with two trustees B and C at the same time tn and in the same context c.

A decides to have a trust relationship with the combined group BC in the same context, as follows:

{A ~* BC)^n — (b,d, ü) where b = bj + bp - bj x bp, d = dj x ^7-/, and ü = dr xuT' + dT< x

Trust relationship between a group of trusters and a single trustee

Next, we address the situation where different trusters having different trust relationships with the

same trustee decides to form a group. After forming the group the trusters behave as a single

truster. We need to define a way to combine these different trust relationships to get the initial

trust for the group. This initial trust gives the starting point of a trust relationship between the

two entities. Thereafter, this trust evolves as before. But before the collaboration can succeed all

trusters need to agree to a common policy as to how to continue to evaluate the trustee as a single

group. In addition, the members need to agree about the following: (i) a common interval length to

determine experience as well as trust, (ii) a common set of recommenders whom the group consider

suitable for recommendation purposes, (iii) a common policy for evaluating trust relationships

with recommenders, and (iv) a common trust evaluation policy vector to assign weights to each

component. Based on this agreement each truster needs to go back and reevaluate their individual

trust relationships. Let the updated trust relationships be t = (67-, ^7-, £7-) and t' = (bp^dp^p)

respectively. We use the consensus operation in subjective logic to define the combined trust

relationship between the group AB and the trustee C, as T = {AB -^-> C)£ = (bf,df,uf), where

, br x up + iv x UT . dj x up -Ydp x üf üT X üv
bf = ~ :: : —, dT = ; ; ;—, and uT = ; ; r—

Uj + Up — UjX Up Uf + Up — UjX Up UT + Up — UT X UT'

When more than two trusters need to form a collaboration, the composite trust relationship is

formed by first combining two of the trusters to form a smaller group and then enlarging the group

one more truster at a time till every one of them has been included.

Trust relationship between a group of trusters and a group of trustees

We now explore the situation when a group of trusters Qr forms a trust relationship with a group of

trustees Qe in some common context c. We can formalize this by combining the above two cases.

Combination can take place in different ways.

1. If the group of trustees ge already exists, then each truster A{ must already have, or must

build a trust relationship (/*, —+ ge)? as described in section 5.2.4. Then i4,'s form the

truster group gr with ge, considering ge as a single trustee, as described in section 5.2.4.

2. If the truster group gr already exists with m different trust relationships like (gr —♦ B$

for / = 1,2,...,fli, then {gr —» ge)? can be formed as in section 5.2.4.

61

3. If neither the group of trusters or the group of trustees exist then one of the groups has to be

formed first after which then the other group is formed as explained above.

Next we examine the effect of reconfiguration of a group on the trust relationship.

Reconfiguration of a group

Ad hoc collaborations are very dynamic in nature. Consequently, anytime after a group is formed

one or more members may leave or a new member may join necessitating re-evaluation of corre-

sponding trust relationships. We have two cases to consider, namely, (i) re-evaluation owing to

reorganization of trustee group, and (ii) re-evaluation owing to reorganization of truster group.

We consider the case where a new trustee, C joins an existing group of trustees G at a time

to. For the purpose of re-evaluation of the trust relationship the truster, A, assumes the group G as

a single trustee. The new trust relationship is then computed in the manner discussed in section

5.2.4. If a trustee leaves a group the re-evaluation of the trust relationship proceeds as follows.

Assume C, the exiting trustee, had joined the group G at time to and is leaving the group G' at time

/„. When C leaves the group it is as if a dummy trustee C with a trust relationship diametrically

opposite to that of C joins the group such that the effects of C is mitigated in the group. However,

at time /„ C's effective trust value has degraded from TQ to some value Vc = (b'c,d'c,vl^). This

is the value that needs to be mitigated. A trust relationship that is diametrically opposite to T'c is

tc = (bc>dc,üc), where be — d'cdc — b'c, and üc = w^ The new trust relationship between the

group G' \C is then obtained by assuming that the dummy trustee C joins the group. The exit of a

group member may or may not necessitate a change in the trust evaluation policy. If the rank of the

trust relationship Tc was greater than the rank of the trust relationship Tc (G being the group that C

joined) then the trust evaluation policy needs to be changed after C leaves. The next re-evaluation

of the trust relationship TGr\C will be based on the new policy.

When a truster B joins an existing group of trusters G', the trust relationship is re-evaluated by

considering the group G' as a single truster and then following the principles discussed in section

5.2.4. Removal of a truster from the group does not affect the group trust relationship However,

the remaining group members may decide to revisit the policy for trust evaluation. The new policy

will hence forth decide how the trust relationship is re-evaluated the next time.

5.3 Conclusions and Future Work

In this work, we propose a new trust model based on subjective logic for use in pervasive computing

applications. We identify three parameters namely, experience, knowledge and recommendation

that contribute towards defining this trust relationship. We propose expression for evaluating these

factors. Next we introduce the concept of normalized trust. We show how to factor in a notion of

62

trust policy in computing the trust vector. We also formalize the notion of trust contexts and their

relationships, so that the trust model is interoperable and allows trust computation on the basis

of extrapolation in the absence of enough information. Finally, we propose operators to compose

trust relationships for dynamic collaboration.

A lot of work remains to be done. We plan to extend the model to support trust chains. We

need to validate our model using real-world data. Finally, we plan to investigate how this model

can be used to provide security services in pervasive computing application.

63

Chapter 6

Risk Estimation and Security Provisioning

Pervasive computing applications typically involve information flow across multiple domains.

Thus, any security breach in an application can have very far-reaching consequences. Effective

security mechanisms are obviously needed; however, these can be quite different from those typ-

ically deployed in conventional applications under similar circumstances. The choice of security

mechanisms in pervasive environments is influenced by a number of factors. Some of the more

important among these are the resource constraints of the devices, the cost of deploying security

mechanisms on these devices, and the attack coverage provided by defenses. How to select the

defenses is referred to as the security provisioning problem. To make matters difficult, security

administrators often have to work within a fixed budget that may be less than the minimum cost of

system hardening. Thus, they have to select a subset of the required security hardening measures

and yet minimize the residual damage to the system caused by not plugging all required security

holes. With cost-effectiveness occurring as a major factor in deciding the extent to which an orga-

nization can secure its pervasive computing environment, it is not sufficient to detect the presence

or absence of a vulnerability and implement a security measure to rectify it. Rigorous analysis is

required to understand the contribution of the vulnerabilities towards any possible damage to the

organization's assets. Often, vulnerabilities are not exploited in isolation, but rather used in groups

to compromise a system. Similarly, security policies can have a coverage for multiple vulnera-

bilities. Further, an attacker's perceived gains through a specific attack strategy can (and should)

influence the security administrator's decision to employ a particular defense strategy. Thus, cost-

effective security management requires evaluating the different scenarios that could lead to the

damage of a secured asset as well evaluating the attacker's various possible attack strategies, and

then come up with an optimal set of security policies (or, a defense strategy) to defend such assets.

In this chapter we formalize these issues and identify possible resolutions to some of the de-

cision making problems related to securing a pervasive computing application. We first develop

a formal model of attack trees to encode the contribution of different security conditions leading

to system compromise. We formalize the notions of attack and defense strategies based on this

64

model of attack trees. Next, we develop a model to quantify the potential damage that can occur

in a system from the attack modeled by the system attack tree. We develop models of cost for

defense and attack strategies. We then propose two models for the risk assessment and the security

provisioning problem. The first model does not consider the attacker's strategy but treats the secu-

rity administrator's problem as a multi-objective optimization problem to maximize security and

minimize cost. The second model treats the security administrator's problem as a payoff problem

to decide how security controls can be incorporated to maximize the return on investment under

the scenario that an attacker is actively engaged in maximizing its return on attacks.

6.1 Attack Tree Model

The vulnerabilities present in a network are often exploited in groups. Materializing a threat usu-

ally requires the combination of multiple attacks exploiting different vulnerabilities. Representing

different scenarios under which an asset can be damaged thus becomes important for preventive

analysis. Such representations not only provide a picture of the possible ways to compromise a

system, but also help to determine a minimal set of preventive actions. Given the normal opera-

tional state of a system an attack could possibly open up avenues to launch another attack, thereby

taking the attacker a step closer to its goal. The presence of a vulnerability in a system does not

imply that it can always be exploited. A certain state of the system in terms of access privileges,

resource constraints or machine connectivities, need to be a prerequisite to be able to exploit a

vulnerability. Once the vulnerability is exploited, the state of the system can change, enabling the

attacker to launch the next attack in the sequence. Such a pre-thought sequence of attacks gives

rise to an attack scenario. We capture the inter-relationships between different vulnerabilities that

play together to form the basis of attacks, in the notion of attack trees. Here we briefly discuss the

attack tree model. More details are available in our papers [9, 39, 10].

Different properties of the pervasive computing application effectuate different ways for an

attacker to compromise a system. We first define an attribute-template that lets us generically

categorize these system properties for further analysis.

Definition 9 An attribute-template is a generic property of the hardware or software configuration

of a system that includes but is not limited to the following:

• system vulnerabilities (which are often reported in the vulnerability database such as Bug-

Traq, CERT/CC, or netcat).

• network configuration such as open port, unsafe firewall configuration, etc.

• system configuration such as data accessibility, unsafe default configuration, or read-write

permission in file structures.

• access privilege such as user account, guest account, or root account.

65

• Connectivity

• resource constraints

Attribute-template lets us categorize most of the atomic properties of the system that might be of

some use to an attacker. For example, "running SSH1 vl.2.23 on FTP Server" can be considered

as an instance of the system vulnerabilities template. Similarly, "user access on Terminar is an

instance of the access privilege template. Such templates also lets us specify the properties in

propositional logic. We define an attribute with such a concept in mind.

Definition 10 An attribute is a propositional instance of an attribute-template taking either a true

ox false value.

The success or failure of an attacker reaching its goal depends mostly on what truth values the

attributes in the system take. Similarly, the security administrator can falsify some of the attributes

using some security policies and controls to prevent an attack from succeeding. We formally

define an attack tree model based on such attributes. Since we consider an attribute as an atomic

property of a system, taking either a true or false value, most of the definitions are written using

propositional logic involving these attributes.

Definition 11 Let S be a set of attributes. We define Att to be a mapping Att :SxS^> {true, false}

and Att(sc,sp) = truth value of sp. a = Att(sc,sp) is an attack ifsc ^ sp A a = sc <-> sp. sc and sp

are then respectively called a precondition and postcondition of the attack, denoted by pre(a) and

post(a) respectively.

Att(sc,sp) is a <j>-attack if 3non-empty S' C S\Att(sc,sp) = /\SjAsc *-* sp where s,(^ sc)85*.

An attack relates the truth values of two different attributes to embed a cause-consequence relation-

ship between the two. For example, for the attributes sc = "vulnerable to sshdBOF on machine A"

and sp —"root access privilege on machine A", Att(sc,sp) is an attack - the sshd buffer overflow

attack. We would like to clarify here that the bi-conditional logical connective "<->" between sc

and sp does not imply that sp can be set to true only by using Att(sc,sp); rather it means that given

the sshd BOF attack, the only way to make sp true is by having sc true. In fact, Att("vulnerable

to local BOF on setuid daemon on machine A",sp) is also a potential attack. The <j>-attack is in-

cluded to account for attributes whose truth values do not have any direct relationship. However,

an indirect relationship can be established collectively. For example, the attributes sCx ss "running

SSH1 vl.2.25 on machine A" and sCl = "connectivity(machine B, machine A)" cannot individually

influence the truth value of sc, but can collectively make sc true, given they are individually true.

In such a case, Att(sCl ,sc) and Att(sC2,sc) are <|>-attacks.

Definition 12 Let A be the set of attacks, including the ({>-attack. An attack tree is a tuple AT =

66

1. Sroot is an attribute which the attacker wants to become true.

2. S = Niraernai UN extend U {sroot} is a multiset of attributes. Nexternal denotes the multiset of

attributes sx for which $aeA\sjEpost(a). Ninternai denotes the multiset of attributes Sj for

which 3d] MiZA\[sjZpre(a\) A SjZpost(ai)\.

3. xC S x S. An ordered pair {spre,Spost)£* if 3azA \ [spre£ pre(a) A spostEpost(a)}. Further, if

s/eSand has multiplicity «, then Hsi,52,.. .,5wßS| (*?,*i),(£j,J2),- •■ , (s/,sn)ex, and

4. e is a set of decomposition tuples of the form (sj,dj) defined for all SjZNimernai U {snot}

and djE{AND,OR}. dj is AND when /\[SJ A (j/,5y)ex] <-► Sj is rrwe, and OR when Vfo A

/ 1
(j,-,5y)ex] «-+ $y is true.

These set of definitions define nodes of the attack tree as propositions and edges relate the truth

value of a node with that of its children. Leaf nodes on the tree represent propositions related to the

different system states, which may be true or false depending on what defenses are in place. The

truth values of the leaf nodes progressively define if the propositions on the internal nodes would

be true or false. If no defense is installed, all leaf nodes would be true. This would finally lead to

the root node to become true as well. In such a case, the attacker is assumed to have successfully

met its objective. Due to the presence of the AND-OR decompositions, the root node may become

true even if all leaf nodes are not true. Similarly, all leaf nodes need not be false for the root to

become false.

Fig. 6.1 shows an example attack tree, with the attribute "root access on machine An as sr0ot-

The multiset S forms the nodes of the tree. The multiset Ncxjemai resemble the leaf nodes of the

These nodes reflect the initial vulnerabilities present in a network and prone to exploits. Since,

an attribute can be a precondition for more than one attack, it might have to be duplicated, hence

forming a multiset. The attribute "machine A can connect to machine ET in the example is one

such attribute. The set of ordered pairs, x, reflect the edges in the tree. The existence of an edge

between two nodes imply that there is a direct or indirect relationship between their truth values,

signified by the decomposition at each node. The AND decomposition at a node requires all child

nodes to have a truth value of true for it to be true. The OR decomposition at a node requires only

one child node to have a truth value of true for it to be true. Using these decompositions, the truth

value of an attribute SjeNinternaj U {sroot} can be evaluated after assigning a set of truth values to

the attributes S,eA'external-

6.2 Defense and Attack Strategies

In order to defend against possible attacks, the system administrator can choose to implement a

variety of safeguard technologies. Each choice of action can have a different cost involved. Some

measures may have multiple coverages, but with higher costs. The defender has to make a decision

67

/ÖP
ninnlno rt»

vl.JJ on
«M» A

/£> ^^ ^ ^
■•chin« • c«n running SSH1 ■uchin« ■ can

COttMCt to V1.2.2S on coaaact t©
UChlfM A McMr.i A MChin« A

Figure 6.1: Example attack tree

and choose to implement a subset of these policies in order to maximize the resource utilization.

Definition 13 Given an attack tree (sroo/,S,T,£), the mapping D : Nex/erna/ -* {true, false} is a

defense if 3s,- eN^^ D{si) = false.

We use the term security control synonymously to indicate a defense. A defense is nothing but a

preventive measure to falsify one or more leaf nodes thereby stopping an attacker from reaching its

goal. Further, in the presence of multiple defenses D*, the truth value of an attribute si G A^x/er«a/

is taken as A At (•*/)• Given a defense D, the set of all Sj € A^ma/I D(si) = false is called the

coverage of D. Hence, for a given set of defenses, we can define the coverage matrix specifying

the coverage of each defense.

Definition 14 For a given set of d defenses, the defense strategy So = (So\SD2,--iSDd) is a

boolean vector indicating which defenses are chosen by the defender. So, = 1 if defense D, is

chosen, zero otherwise.

The choice of this vector specifies which leaf nodes in the attack tree would be false to begin

with. An attacker typically exploits leaf nodes that are not covered by any defense in order to

progressively climb up the tree, inflicting some amount of damage to the network at every step.

However, it is not always correct to assume that an attacker can no longer exploit some parts of

the attack tree because of the installed defenses. With the appropriate tools and knowledge, an

attacker may have the potential to bypass a defense as well. In other words, leaf nodes that were

made false by a defense can be reverted back to being true. We thus assume an attacker with the

proper knowledge to able to breach a defense. However, in order to do so, the attacker will have

to incur some cost, often related to the number of defenses in place and the difficulty to breach

them. If an attacker's gains are less than the cost incurred, then its effort to breach the defense is

not worth the time and value. This primarily motivates the defender to still install defenses despite

there being a chance of breach.

Given that the attacker can bypass an installed defense (after incurring a cost), it can start its

exploits from any leaf node on the attack tree. The attacker's progress towards the root is then

decided by the leaf nodes it chooses. Note that choosing all leaf nodes that can collectively make

an intermediate node true need not always be the best approach for the attacker. For instance,

given that defenses will be in place at different levels of the tree and the attacker will have to incur

a cost to bypass them, it is possible that the attacker derives more payoff by inflicting damages at

different parts of the attack tree rather than continuing along a single scenario all the way up to the

root. An attack strategy is thus defined as follows.

Definition 15 Let a denote the number of unique leaf nodes in an attack tree. An attack strategy

§A = (SA] SA2, • • • ,SA0) is a boolean vector indicating which leaf nodes in the tree are chosen by

the attacker for exploit. Sj, = 1 if node A, G ^external is chosen, zero otherwise.

An attack strategy specifies the path(s) that the attacker pursues to an intermediate level or the

top level of the attack tree. The success of the strategy depends on the defense strategy adopted by

the defender, as well as the number of levels it can move up on the tree. Another way to visualize

an attack strategy is the set of leaf nodes that the attacker assumes to be true, or will make true by

breaching the defenses protecting them.

6.3 Cost Model

In order to defend against attacks, a security manager can choose to implement a variety of safe-

guard technologies. Each of these comes with different costs and coverages. For example, to

defend against the ftp/.rhost exploit, one may choose to apply a security patch, disable the FTP

service, or simply tighten the write protection on the .rhost directory. Each choice of action can

have a different cost. Besides, some measures have multiple coverages, but with higher costs. A

security manager has to make a decision and choose to implement a subset of these policies in order

to maximize the resource utilization. However, this decision is not a trivial task. Security planning

begins with risk assessment which determines threats, loss expectancy, potential safeguards and

installation costs.

The potential damage, Pj, represents a unitless damage value that an organization might have

to incur in the event that an attribute sj becomes true. Based on Butler's multi-attribute risk-

assessment framework [6, 7], we specify below the four steps to calculate the potential damage for

an attribute Sj.

Stepl: Identify potential consequences of having a true value for the attribute, induced by some

attack. In our case, we have identified five outcomes - lost revenue ($$$), non-productive

69

downtime (hrs), damage recovery ($$$), public embarrassment (severity scale) and law

penalty (severity scale) - denoted by x\j,X2j,xy, x^j and x5j.

Step2: Estimate the expected number of attack occurrence, Freqj, resulting in the consequences.

A security manager can estimate the expected number of attack from the organization-based

historical data or public historical data.l

Step3: Assess a single value function, Pj/(x*/), for each possible consequence. The purpose of this

function is to normalize different unit measures so that the values can be summed together

under a single standard scale.

Wtf-a^** ***** <61>

Step4: Assign a preference weight factor, W^ to each possible consequence. The weight factor

represents an organization's concerns for different outcomes. A security manager can rank

each outcome on a scale of 1 to 100. The outcome with the most concern would receive

100 points. The manager ranks the other attributes relative to the first. Finally, the ranks are

normalized and set as W-t.

The potential damage for the attribute can then be calculated from the following equation.

Pj=Ff*qjx%mViAxij) (6.2)
i=\

When using an attack tree, a better quantitative representation of the cost is obtained by con-

sidering the residual damage once a set of security policies are implemented. Hence, we augment

each attribute in the attack tree with a value signifying the amount of potential damage residing in

the subtree rooted at the attribute and the attribute itself.

Definition 16 Let AT = (sroot ■ S. T. e) be an attack tree. An augmented-attack treeATaug = AT\(I,V)

is obtained by associating a tuple (/,-, Vj) to each SjtS, where

1. /, is an indicator variable for the attribute s„ where

/! = <
0 , if Si is false

1 , if Si is true

2. V,is a value associated with the attribute *,.

In this work, all attributes s/tAfex/ema/ are given a zero value. The value associated with SjZNiraernai U

'Also known as an incident report published annually in many sites such as CERT/CC or SANS.ORG.

70

{sroot} is then computed recursively as follows.

Vj = l

X*i +IjPj JfdjisAND

Max Vk + IjPj , ifdj is OR
(6.3)

Ideally, Pj is same for all identical attributes in the multiset. We took a "panic approach" in

calculating the value at each node, meaning that given multiple subtrees are rooted at an attribute

with an OR decomposition, we choose the maximum value. The residual damage of the augmented

tree is then defined as follows.

Definition 17 Given an augmented-attack tree (sroo/,S,T,e)|(/, V) and a vector T = (7]), 7]e{0:1}; 1 <

i < m, the residual damage is defined as the value associated with sroot, i.e.,RD(T) = Vroot

Similar to the potential damage, the security manager first lists possible security costs for the

implementation of a security control, assigns the weight factor on them, and computes the normal-

ized value. The only difference is that there is no expected number of occurrence needed in the

evaluation of security cost. In our case, we have identified five different costs to implementing a

security control - installation cost ($$$), operation cost ($$$), system down-time (hrs), incompati-

bility cost (scale), and training cost ($$$). The overall cost Cy, for the security control SCJy is then

computed in a similar manner as for potential damage, with an expected frequency of 1. The total

security cost for a set of security controls implemented is then defined as follows.

Definition 18 Given a set of m defenses, each having a cost C,; 1 < i < m, and a vector T = (7}),

7}e{0,1}; 1 < i < m, the defense strategy cost is defined as SCC{f) = Jg,, (7J-C,-)

From these two models of defense strategy cost and residual damage we can formulate the

system administrator's decision problem as finding a defense strategy that minimizes the defense

strategy cost as well as minimize the residual damage. To perform this optimization, the sys-

tem administrator needs to express a preference - whether to give more emphasis on the defense

strategy cost or on the residual damage. Depending on this preference the decision problem will

provide the best defense strategies at specific cost levels. By setting the residual cost to zero, the

system administrator can come up with a defense strategy that guarantees complete system safety

under closed world assumption (that is no zero day attack). However, owing to budget constraints,

the system administrator may need to understand better the tradeoff between defense strategy cost

and network safety. Additionally, the system administrator may also want to determine optimal,

yet robust defense strategies. These are strategies that can tolerate some (predetermined) degree

of failures (that is, compromise from attacks) yet continue to ensure no further residual damage.

Such strategies provide some latitude against zero day attacks.Towards this end, we formulate the

first security provisioning problem as a multi-objective robust optimization problem.

71

The Security Provisioning Problem as a Multi-objective Robust Optimization Problem

Let f = (7}) be a boolean vector. A perturbed assignment of radius r, fr, is obtained by

inverting the value of at most r elements of the vector f. The value r determines how many security

controls may fail before the system is compromised. The robust optimization problem can then

be defined as follows: Given an augmented-attack tree (sroo,,S,T,e)|(7, V) and m security controls,

find a defense strategy f* = (7)*), 7]*e{0,1}; 1 < i < m, which minimizes the total security control

cost and the residual damage, satisfying the constraint max RD(fr') - RD(f*) < D where, D is the
f;

maximum perturbation allowed in the residual damage.

6.4 Payoff Model

To factor in the attacker's strategy, we observe that the cost of realizing an attack strategy is related

to the effort that the attacker has put forward in overcoming any defenses put forward. We model

this cost under an assumption that stronger defenses are likely to have a higher cost of implemen-

tation. Under this assumption, we measure the relative difficulty to breach a defense - a value in

[0,1] - and assign the cost to breach it, BC(-), as a fraction (given by the difficulty value) of the

cost of implementation of the defense, i.e.#C(D,) = J^c x Q

Definition 19 Given a set of d defenses, a defense strategy So and an attack strategy SA on an at-

tack tree^r, ±Q attack strategy cost ASCxstehneddS ASC(SD,SA) =Sf=1 Iy|D/(/<;)=/fl/5e[^C(A)%,5/iy]

The expression above iterates through the leaf nodes covered by a particular defense. There-

after, the cost to breach the defense is added to the attack strategy cost if the defense is part of the

defense strategy and the leaf node is part of the attack strategy. When a breach occurs, the cost paid

by the defender to install it (C,) is a loss, called the breach loss BL(-) and expressed in a manner

similar to the above equation. BL(SD) = lf=1 Hj\Di(Aj)=/aise[ciSDiSAj]

We then define the defender and attacker payoffs as follows.

Definition 20 For a given defense strategy Sp and an attack strategy SA on an augmented-attack

XreeATaug, the defender's payoff POD is given as, POD(SD,SA) = £>/(ÖJ) +DSC(SD) -DI(SD,SA) -

BL(SD) and the attacker spayoffPOA is given as, POA(SD,SA) = DI(SD,SA) - ASC(SD,SA)

Here, D/(0,T) signifies the maximum damage possible on the attack tree. This happens when

there are no defenses installed and the attacker exploits all leaf nodes. 0 represent the all zero

vector and 1 is the all one vector. Note that both payoff functions employ the same DI value

derived from the attack tree. More details can be found in our paper [10].

To account for differences arising in the magnitudes of the values of the POD and ASC func-

tions, we normalize them. The normalized functions for POD and POA - in the range of [0,1] -

72

are then given as,

., _

PODnormWD^A) = ~ =-^r-
normy D, A) DSa<SD) + D1{QA)

pn. (S g, POA(SD,SA)+ASC(SD,SA)
POAaorm{SD,SA) = __^__0_

The normalized versions are more intuitive in understanding the payoff functions model. The

defender has an investment worth DSC(SD) + DI(0A) on the attack tree. PODnorm gives the frac-

tion of this investment protected by the defender's strategy for a particular attack strategy. In other

words, PODnorm gives the fractional return on investment for the defender. From an attacker's

perspective, the best it can do is gather the payoff from maximum damage and also retain the cost

incurred while doing so to itself. DI(SD<SA) is the amount that it actually derives. POAnorm is thus

the fractional return on attack to the attacker.

The defender's optimization problem is to find a defense strategy So that gives maximum

PODnorm under all possible attack strategies. The attacker's optimization problem is to find an

attack strategy §A that gives maximum POAn0rm under all possible defense strategies. We want

to emphasize here that solving just one problem is not sufficient. For example, assume that the

defender has found the optimal solution to its problem. The PODn0rm reported by the solution

implicitly assumes that the attacker will launch the strategy SA that gives the highest attacker

payoff - established in the optimization problem by the relation. If the attacker also solves its

own optimization problem, there is no guarantee that the best strategy found by it is the same SA

as found in solving the defender's optimization problem. The outcome in this case could be that

both the attacker and the defender get sub-optimal payoffs. This implies the requirement to solve

both problems simultaneously, the desired solution being the so called Nash equilibrium in game

theory parlance [32]. The equilibrium defense and attack strategy pair So and SA satisfy the con-

ditions PODnorm{SD\s/) > PODnorm{SD,S/) and POAn0rm(SD\s/) > POAnorm{SD\SA) for

any given defense strategy SD(/ Sp) and attack strategy SA(^SA).

6.5 Conclusion

We addressed the security provisioning problem in pervasive computing environment, namely,

how to select a subset of security hardening measures from a given set so that the total cost of

implementing these measures is not only minimized but also within budget and, at the same time,

the cost of residual damage is also minimized. We developed two models to address this problem

- a initial simplistic model that does not consider the attacker's perceptions about cost to break the

system, and a second one that includes this cost.

73

In a related work [11], which we do not include here for lack of space, we show how workflow

profiles can be used to capture the contexts in which a communication channel can be used in a

pervasive environment. We formulate a set of constrained multi-objective optimization problems

that minimize the residual damage and the maintenance cost incurred to keep the workflow secure

and ninning.

Both these models take a static approach to security provisioning. There is however a dynamic

aspect to the security planning process. For every attack, there is a certain probability of occurrence

that can change during the life time of a system depending on what the contributing factors for the

attack are and how they are changing. During run time, the system administrator may need to

revise her decision based on such emerging security conditions. The next step in this work is to

model this dynamic aspect. We have developed a preliminary model to address this problem that

appears in our paper [38].

74

Chapter 7

Controlled Disclosure of Location
Information

Pervasive computing applications typically use mobile devices that capture the locations of the

user. The location information is used to provide better services. Often such applications need

continuous location-based services (LBS) where the mobile object must periodically communicate

its location to the service provider. One serious concern is the potential usage of of the location

data to infer sensitive personal information about the mobile users. With access to the location

data, sender anonymity can be violated even without the capability to track a mobile object. We

refer to this class of adversaries as location-unaware adversaries. Such adversaries use external

information to perform attacks resulting in restricted space identification, observation identification

and location tracking [17].

Location obfuscation is one of the widely researched approaches to safeguard location anonymity.

This technique guarantees that the location data received at the LBS provider can be associated

back to more than one object - to at least k objects under the location k-anonymity model [17]. For

this, a cloaking region is communicated to the service provider instead of the actual location. A

fc-anonymous cloaking region contains at least k - 1 other mobile objects besides the service user.

However, this approach is not sufficient to preserve privacy in a continuous LBS. In the continu-

ous case, an object maintains an ongoing session with the LBS, and successive cloaking regions

may be correlated to associate the session back to the object. Such session associations reveal the

trajectory of the involved object, and any sensitive information thereof. Assuring that every cloak-

ing region contains k objects is not sufficient since the absence of an object in one of the regions

eliminates the possibility that it is the session owner. Performing such elimination is much easier

for a location-aware adversary who has the capability to monitor users. This class of adversaries

has exact location information on one or more objects and uses it to eliminate possibilities and

probabilistically associate the session to consistently existing objects.

Session association attacks can be avoided if it can be assured that every cloaking region in a

75

4

e'

mobile objects

location
T +

request

trusted anonymity server

^w

anonymizer

V J

O.sid

» suppressed

1 ^

multiple
range

queries J

multiple cloaking regions

query processor

V)

^

O.sid
!

filtered
result(s) ^ candidate

result
set

Figure 7.1: Schematic of the system architecture

session contains k common objects. This is referred to as historical k-anonymity [5]. However, as

a result of the movement of objects, a historically A'-anonymous cloaking region is very likely to

grow in size over time, thereby deteriorating service quality. In this work, we make an attempt to

identify the issues involved with effectively enforcing historical ^-anonymity.

The rest of the chapter is organized as follows. Section 7.1 presents the architecture of our

system and some observations on historical ^-anonymity. Section 7.2 describes our anonymization

algorithm CANON that enforces historical ^-anonymity. Section 7.3 compares the performance

of CANON with that of an existing one, namely, ProvidentHider, that also provides historical k-

anonymity. Section 7.4 concludes the paper.

7.1 System Architecture

Figure 7.1 depicts our system consisting of three layers - (i) mobile objects, (ii) a trusted anonymity

server, and (iii) a continuous LBS provider. The trusted anonymity server acts as a channel for

any communication between mobile objects and continuous LBS providers. A mobile object O

initiates a service session by registering itself with the anonymity server. The registration process

includes the exchange of current location information (O.loc) and service parameters signifying

the request to forward to the LBS provider, as well as the anonymity level (O.k) to enforce while

doing so. The anonymity server issues a pseudo-identifier and uses it both as a session identifier

(0.sid) with the mobile object and as an object identifier when communicating with the LBS

provider. A set of cloaking regions is then generated for the requesting object and multiple range

queries are issued to the LBS provider for these regions. Communication between the anonymity

76

3 3-anonymous MBR

Historically 3-anonymous MBR

Figure 7.2: Conventional ^-anonymity and historical A:-anonymity.

server and the LBS provider is always referenced using the object identifier so that the LBS can

maintain service continuity. The candidate results retrieved from the LBS provider are filtered at

the anonymity server and then communicated to the mobile object. Subsequent location updates

from the mobile object are handled in a similar fashion (with the pre-assigned session identifier)

until the anonymity level cannot be satisfied or the service session is terminated. A request is

suppressed (dropped) when the anonymity requirements can no longer be met within the same

service session. A new identifier is then used if the mobile object re-issues the same request. We

further assume that an object does not change its service parameters during a session. A separate

session is started if a request with different service parameters is to be made. Therefore, an object

can have multiple sessions running at the same time, each with a different session identifier.

7.1.1 Historical A-anonymity

The primary purpose of a cloaking region is to make a given mobile object o indistinguishable

from a set of other objects. This set of objects, including O, forms the anonymity set of O. Objects

in the anonymity set shall be referred to as peers of O and denoted by O .peers. A cloaking

region for O is usually characterized by the minimum bounding rectangle (MBR) of the objects

in O .peers. Larger anonymity sets provide higher privacy, while at the same time can result in

reduced service quality owing to a larger MBR. Therefore, the cloaking region is typically required

to achieve an acceptable balance between anonymity and service quality.

77

Consider the movement pattern of the objects depicted in Figure 7.2. A 3-anonymous MBR

is computed for 0\ during three consecutive location updates. If O] 's requests at the three time

instances are mutually independent from each other, then the privacy level of 0\ is maintained at

3-anonymity across the different MBRs. However, when the same identifier is associated with all

the MBRs (as in a continuous LBS), it only requires an adversary the knowledge of 0\. Oi and O3 's

positions at time t\. h and /3 to infer that the requests are being issued by object 0\. This is because

0\ is the only object common across the anonymity sets induced by the cloaking regions. We refer

to this as a case of full disclosure. Assuming that each object is equally likely to be included in

another object's cloaking region, the probability of full disclosure is unacceptably high.

Remark 1: Let A \,... ,An be a sequence of anonymity sets corresponding to n > 1 consecutive

A'-anonymous cloaking regions for a mobile object O, generated from a collection of TV mobile

objects. Then, the probability that the intersection of the anonymity sets Sn = HAj has at least p
i

objects, p > 1, is (pP-^y.

Remark 2: If k < '^- then the probability of full disclosure is at least |. The full disclosure

risk is given as £>/„// = Pr(\sn\ = 1) = Pr{\Sn\ S 1) — Pr(\<Sn\ ä 2). Since intersection of the

anonymity sets contain at least one object, we have Pr(\sn\ > 1) = L Hence, <D fun — 1 - (^ry)"-

With k < *fi, or fä < i, we have Dfull > 1 - £ > 1 _ £ = 1.

We also observe in Figure 7.2 that it does not require knowledge on the objects' locations at all

three time instances in order to breach O] 's privacy. In fact, location knowledge at time instances t\

and h is sufficient to lower 0\ 's privacy to 2-anonymity. This is referred to as a partial disclosure.

Such disclosures occur when the intersection of anonymity sets (corresponding to the same object)

contain less than the desired number of peers (the anonymity level k).

A straightforward extension of the conventional A:-anonymity model that can counter risks of

full and partial disclosures in a continuous LBS is to ensure that all anonymity sets within a service

session contain at least k common objects.

Remark 3: Historical A-anonymity. Let A\,... ,An be a sequence of anonymity sets corre-

sponding to the cloaking regions with the same identifier and at time instants t\. — /„, /, > tj

for / > j, respectively. The anonymity set Aj is then said to satisfy historical ^-anonymity if

\A\n...r\Ai\ >k.

In other words, the sequence of anonymity sets preserve historical /.--anonymity if all subse-

quent sets after A \ contain at least k same objects from A \. Figure 7.2 depicts how the cloaking re-

gions should change over time in order to ensure that object 0\ always has historical 3-anonymity.

7.1.2 Implications

Historical ^-anonymity impedes session association attacks by location-aware adversaries. How-

ever, maintaining acceptable levels of service can become increasingly difficult in case of historical

78

A-anonymity. We have identified three issues for consideration that impact the practical usage of

historical /:-anonymity.

Defunct peers: A defunct peer in an anonymity set is an object that is no longer registered

with the anonymity server. As a result, it can no longer be ascertained that a cloaking region

includes the peer. If the first cloaking region generated during a particular session contains exactly

k objects, then every other anonymity set in that session must contain the same k objects for it to be

historically A-anonymous. A defunct peer in this case does not allow subsequent cloaking regions

to satisfy historical A-anonymity and introduces possibilities of partial disclosure.

Diverging peer trajectories: The trajectories of peers influence the size of a cloaking region

(satisfying historical A-anonymity) over time. Refer to Figure 7.2. The MBR for object 0\ becomes

increasingly larger owing to the trajectory of object O3. Bigger cloaking regions have a negative

impact on service quality. In general, the more divergent the trajectories are, the worse is the effect.

Algorithms that use a maximum spatial resolution will not be able to facilitate service continuity

as spatial constraints will not be met.

Locality of requests: The significance of a particular service request can often be correlated

with the locality where it originated. For instance, let us assume that the region shown in Figure

7.2 corresponds to an urban locality. Further, object 0\ issues a request to periodically update

itself with information (availability, price, etc.) on the nearest parking garage. At time instance t\,

an adversary cannot infer which object (out of 0\, O2 and O3) is the actual issuer of the request.

However, as O3 moves away from the urban locality (suspiciously ignoring the high concentration

of garages if it were the issuer), an adversary can infer that the issuer of the request is more likely

to be 0\ or O2. We say that these two objects are still in the locality of the request. If historical

A-anonymity is continued to be enforced, O3 (and most likely O2 as well) will be positioned in

different localities, thereby allowing an adversary infer with high confidence that 0\ is the issuer

of the request. Note that these three issues are primarily applicable in the context of a continuous

LBS.

7.2 The CANON Algorithm

We propose CANON which is an anonymization algorithm that enforces historical A-anonymity

for use with a continuous LBS. An overview of this algorithm is given by Procedure 1.

CANON is initiated by the anonymity server whenever it receives a request from a mobile

object O. The algorithm starts by first checking if O has an open session with respect to the current

request. If it finds one then the set of peers is updated by removing all defunct peers from the

set. Otherwise, a peer set is generated for O through a procedure CreatePeerSet and a session

identifier is assigned. The newly generated (or updated) peer set must have at least o.k objects in

order to continue to the next step; otherwise the request is suppressed and the session is terminated.

79

Procedure 1 CANON(Object o)
Input: Mobile object o (includes all associated data).
Output: A set of peer groups (one of them includes 0); null if request is suppressed (cannot satisfy

anonymity).
1: if (O.sid = null) then
2: O .peers = CreatePeerSet{ O)
3: 0.sid = new session identifier
4: else
5: remove defunct objects in 0.peers
6: end if
7: if (\o.peers\ < O.k) then
8: O.sid =nu\\
9: return null

10: end if
11: peerGroups = PartitionPeerSet(O)
12: if (3g ^peerGroups such that |g| < 2) then
13: 0.sid= null
14: return null
15: end if
16: return peerGroups

If the number of peers, O. peers generated by CreatePeerSet is less than O.k, then the algorithm

terminates as historical /r-anonymity cannot be ensured. The next step is to divide the peer set

into groups over which the range queries will be issued. A peer group is defined as a subset of

O .peers. PartitionPeerSet divides O .peers into disjoint peer groups. Each peer group defines a

smaller cloaking region than that defined by the entire peer set and reduces the impact of diverging

trajectories on service quality. The peer groups returned by CANON are used to issue multiple

range queries (one for each) with the same object identifier. Finally, the algorithm checks that each

group contains at least two objects in order to avoid the disclosure of exact location information to

location-unaware adversaries.

7.2.1 Handling defunct peers

As mentioned earlier, defunct peers can influence the lifetime of a service session by reducing the

peer set size to below the limit that satisfies historical A-anonymity. The resolution is to include

more than k objects in the first peer set. This is achieved in CANON as follows. It uses an oversize

factor T that relatively specifies the number of extra peers that must be included in the peer set. The

minimum initial size of the peer set of an object O is equal to (1 -fi) X o.k with this strategy. We

say "minimum" because other parameters introduced later can allow more peers to be included.

Note that since CANON partitions the peer set into further groups before issuing a query, the area

of the cloaking region defined by the enlarged peer set has little or no influence on service quality.

80

However, we would still not want the area to expand extensively in order to curb the issue of

request locality.

7.2.2 Deciding a peer set

The CreatePeerSet procedure determines the initial peer set for an object. At this point, we need

to ensure that majority of the objects in the peer set are in the locality of the request. We believe

there are two requirements to address in this regard.

1. Objects in the peer set should define an area where the request is equally significant to all

the peers.

2. Objects in the peer set should move so that the defined area does not expand too much.

The first requirement will prohibit the inclusion of peers that are positioned in a locality where

the issued request is unlikely to be made. The second requirement addresses locality of requests in

the dynamic scenario where the trajectories of the peers could be such that they are positioned in

very different localities over time. Preventing the MBR of the peer set from expanding prohibits

peers from being too far away from each other. The first requirement can be fulfilled by choosing

peers according to the Hubert Cloak algorithm. Peers chosen according to Hubert indices will

induce a small MBR, thereby ensuring that they are more likely to be in the same locality. However,

a peer set generated by this process cannot guarantee that the second requirement will be fulfilled

for long. This is because the neighbors of an object (according to Hubert index) may be moving in

very different directions.

It is clear from the above observation that the direction of travel of the objects should be ac-

counted for when selecting peers. The direction of travel is calculated as a vector from the last

known location of the object to its current location, i.e. if 0.loc\ = (x\ }y\) and O.I0C2 = (^2^2)

are the previously and currently known positions of O respectively, then the direction of travel is

given as O.dir — O.loci - oAoc\ = {xi — x\,yi -y\). O.dir is set to (0,1) (north) for newly reg-

istered objects. A ^-neighborhoodfbr O is then defined as the set of all objects whose direction of

travel is within an angular distance 0 (say in degrees) from O.dir. Therefore, a 0°-neighborhood

means objects traveling in the same direction, while a 180°-neighborhood contains all objects. If

all peers are chosen within a 0°-neighborhood then it is possible that the area defined by the initial

peer set will more or less remain constant over time. However, the initial area itself could be very

large due to the non-availability of such peers within a close distance. On the other hand, using a

180°-neighborhood essentially allows all objects to be considered and hence the area can be kept

small by including close objects. Of course, the area may increase unwantedly over time. Peer

set generation is therefore guided by two system parameters in CANON - the neighborhood step

size 6 and the fall-MBR resolution oc/M//. The neighborhood step size specifies the resolution at

which the 9-neighborhood is incremented to include dissimilar (in terms of travel direction) peers.

si

Procedure 2 CreatePeerSet(Object o)

L — set of available mobile objects sorted by their Hubert index
i0/ = (l-fT)xoi;!P =<♦>
repeat

for all (/ G £ in order) do
if (|£c| > £0/ and AreaMBR(LcU{/})> a/«//) then

break
end if
£C = £CU{/}

end for
Pprev = <P\f= \',Opivot = first object in Lc

repeat
<P = (/9)-neighbors of Op/v0, in £c

/ = /+!
until (|2>j>min(Ao/,|£c|))
£ = £ -2>

until (0 €5>)
if(|2>|<£o/)then

else if (|£ | <£o/)then
T = <PUL

end if
return !P

The full-MBR resolution specifies some area within which the issued request is equally likely to

have originated from any of the included objects, thereby making it difficult for an adversary to

eliminate peers based on position and request significance. For small values of 0 and some a/■„//,

all objects in a peer set would ideally move in a group, in and out of a locality. Procedure 2 outlines

the pseudo-code of CreatePeerSet. We assume the existence of a function Area MB R that returns

the area of the minimum bounding rectangle of a set of objects.

CreatePeerSet first creates a sorted list £ of all registered objects according to their Hubert

indices. It then continues to divide them into buckets (starting from the first one in the sorted

list) until the one with O is found. Every time a bucket is formed, £ is updated by removing all

objects in the bucket from the list. We now describe how to get a set £c of candidate objects that

can potentially form a bucket. Starting from the first available object in £, we continue to include

objects in Lc as long as the minimum peer set size (denoted by k0f and decided by the oversize

factor) is not met, or the area of the MBR of included objects is within the full-MBR resolution.

Note that, as a result of this condition, the minimum required size of the peer set receives more

prominence than the resulting area. Hence, the full-MBR resolution is only a guiding parameter

and not a constraint. Next, the algorithm selects kQf objects from the candidate set to form a

82

Procedure 3 PartitionPeerSet(Object O)
Input: Mobile object o (includes all associated data) and system global asui,.
Output: A set of peer groups.

1: Sort objects in O .peers by their Hubert index
2: peerGroups = <J>
3: bucket = <{>
4: for all (/ € O.peers in order) do

if (AreaMBR(bucketU{l}) < a^b) then
6: bucket = buckets {1}
7: else
8: peerGroups = peerGroups U {bucket}
9: bucket - {/}

10: end if
11: end for
12: peerGroups —peerGroups U {bucket}
13: return peerGroups

bucket. The first object in Lc is chosen as a pivot and all objects in the 0-neighborhood of the pivot

are included in the bucket. If the bucket is not full up to its capacity (k0/) and more objects are

present in Lc% then the neighborhood is increased by the step size 6. By the end of this process, the

bucket would either contain k0f objects or there are less than k0f objects in Lc. The latter is only

possible when list L contains less than k0/ objects, i.e. the last bucket is being created. Once the

bucket with 0 is found, two more checks are required. First, if O 's bucket has less than k0/ objects

(possible if it is the last one), then it is merged with the previous bucket. Second, if the number of

objects remaining in L is less than k0/ (implying o 's bucket is second to last), then the remaining

objects are included into O 's bucket.

CreatePeerSet uses 9-neighborhoods and the full-MBR resolution to balance between dissimi-

lar peers and the resulting MBR area. While the step size 6 allows incremental selection of dissimi-

lar peers, CLfuu guides the extent of increment admissible to generate a localized peer set. Note that

the creation of a peer set is a one time procedure every service session. Hence, a good estimation

of the direction of travel is required to avoid diverging trajectories. CANON uses an instantaneous

direction vector, since we believe this method performs reasonably well in road networks.

7.2.3 Handling a large MBR

The full-MBR resolution parameter is used to control breaches related to request localities. Typical

values are in the range of 10 to 50km2. The parameter is therefore not intended to help generate

cloaking regions with small MBRs. A continuous LBS would require a much finer resolution to

deliver any reasonable service. Further, depending on variations in velocity and the underlying road

network, some extent of expansion/contraction of the MBR is very likely. The MBR of a peer set

is therefore not a good candidate to issue the range queries. Instead, the peer set is partitioned into

83

multiple disjoint groups by PartitionPeerSet. Partitioning of the peer set eliminates empty spaces

between peers (introduced in the first place if trajectories diverge) and produces smaller MBRs

for the range queries [49]. This partitioning is done such that each peer group has a maximum

spatial resolution. In CANON, the maximum spatial resolution of a peer group is specified as the

sub-MBR resolution avw/,. asu/> is relatively much smaller than a/w//. Procedure 3 outlines the

partitioning method.

The partitioning is performed in a manner similar to Hubert Cloak, with the difference that

each bucket now induces an area of at most asub instead of a fixed number of objects. Starting

from the first object in the Hilbert-sorted peer set. an object is added to a bucket as long as the

sub-MBR resolution is met; otherwise the current bucket is a new peer group and the next bucket

is created. We do not handle the case when a peer group contains only one object. Our CANON

algorithm checks that such groups do not exist (safeguard against location-unaware adversaries);

otherwise the request is suppressed. However, the partitioning algorithm itself can relax the sub-

MBR resolution when a peer group with a single object is found. The manner in which such

relaxations can be done will be addressed in a future work.

7.3 Empirical Study

The experimental evaluation compares the performance of CANON with the ProvidentHider al-

gorithm. For every new request, ProvidentHider first groups all available objects from a Hilbert-

sorted list such that each bucket holds O.k objects; more if adding them does not violate a maxi-

mum perimeter (Pmax) constraint. The peer set of an object is the bucket that contains the object.

A range query is issued over the area covered by the objects in the peer set only if the maximum

perimeter constraint is satisfied; otherwise the request is suppressed. Refer to [31] for full details

on the algorithm. We measure a number of statistics to evaluate the performance.

• service continuity: average number of requests served in a session

• service failures: percentage of suppressed requests

• safeguard against location-unaware adversaries: average size of the peer group to which

the issuing object belongs

We have generated trace data using a simulator [14] that operates multiple mobile objects based

on real-world road network information available from the National Mapping Division of the US

Geological Survey. We have used an area of approximately 168 km2 in the Chamblee region of

Georgia, USA for this study.

The used traffic volume information (Table 7.1) results in 8,55 8 objects with 34% on express-

ways, 8% on arterial roads and 58% on collector roads. The trace data consists of multiple records

84

road type traffic volume mean speed standard deviation

expressway 2916.6 cars/hr 90km/hr 20km/hr
arterial 916.6 cars/hr 60km/hr 15km/hr

collector 250 cars/hr 50km/hr lOkm/hr

Table 7.1: Mean speed, standard deviation and traffic volume on the three road types.

spanning one hour of simulated time. A record is made up of a time stamp, object number, x and

v co-ordinates of object's location, and a status indicator. The status indicator signifies if the ob-

ject is registered to the anonymity server. An object's status starts off randomly as being active or

inactive. The object remains in the status for a time period drawn from a normal distribution with

mean 10 minutes and standard deviation 5 minutes. The status is randomly reset at the end of the

period and a new time period is assigned. The granularity of the data is maintained such that the

Euclidean distance between successive locations of the same object is approximately 100 meters.

Each object has an associated k value drawn from the range [2,50] by using a Zipf distribution

favoring higher values and with the exponent 0.6. The trace data is sorted by the time stamp of

records.

During evaluation, the first minute of records is used only for initialization. Subsequently, the

status of each record is used to determine if the object issues a request. Only an active object is

considered for anonymization. If the object was previously inactive or its prior request was sup-

pressed, then it is assumed that a new request has been issued. Otherwise, the object is continuing a

service session. The anonymizer is then called to determine the cloaking region(s), if possible. The

process continues until the object enters an inactive (defunct) state. Over 2,000,000 anonymization

requests are generated during a pass of the entire trace data.

Default values of other algorithm parameters are set as follows: x = 0.0, oc/M// = 25 knr,

asub = 1 km2, 6 = 180° and Pmax = 5000 m. A 5000 m perimeter constraint for ProvidentHider

is approximately an area of \.6km2. Compared to that, a^ has a smaller default value. The

precision is around 1000 m (assuming a square area) which serves reasonably well for a Pay-As-

You-Drive insurance service. The full-MBR resolution of 25 km2 evaluates to a locality about ^

the size of New York City. The entire map is assumed to be on a grid of 214 x 214 cells (a cell

at every meter) while calculating the Hubert indices [30]. Objects in the same cell have the same

Hubert index.

The following points summarize the results from the experimental study. The detailed analysis

appears in our related paper [12].

• CANON has a superior performance compared to ProvidentHider in maintaining longer

service sessions across a wide range of anonymity requirements. More requests are also

successfully anonymized by CANON.

• Including a small number of extra objects in a peer set is advantageous in handling defunct

85

peers. However, extremely large peer sets can be detrimental.

• Use of direction information during the formation of a peer set does help avoid peers drifting

away from each other over time. Choice of a too small neighborhood affects service quality,

but is not necessary to balance performance across different measures.

• Performance is better with larger sub-MBR resolutions. However, performance in high pre-

cision services may be improved with a good strategy to relax the constraint.

• Service continuity is marginally different for different full-MBR resolutions. However, fail-

ure to serve new requests is much lower with smaller resolutions.

7.4 Conclusion and Future Work

Owing to the limitations of ^-anonymity in a continuous LBS, an extended notion called historical

A'-anonymity has been recently proposed for privacy preservation in such services. However, all

known methods of enforcing historical A'-anonymity significantly affects the quality of service.

In this paper, we identified the factors that contribute towards deteriorated service quality and

suggested resolutions. We proposed the CANON algorithm that delivers reasonably good service

quality across different anonymity requirements. The algorithm uses tunable parameters to adjust

the size of a peer set, trajectories of peers and cloaking regions over which range queries are

issued. Immediate future work includes optimizing the performance of CANON in terms of better

usage of directional information. We believe this optimization is crucial in order to have similar

performance across all levels of anonymity requirements. Merging location anonymity and query

privacy in a continuous LBS is a natural extension of this work.

86

Chapter 8

Designing Secure Pervasive Computing
Applications

Pervasive computing applications are extremely complex; they have to satisfy functional as well as

non-functional requirements, such as security. Moreover, security requirements are not confined

to one module of the application, but must be consistently applied to all the modules. Due to the

complexity of such applications, security cannot be added as an afterthought but must be addressed

during the very early stages while the application is being designed.

In this work, we provide a methodology for designing such applications and getting assurance

that the security properties are indeed satisfied. Often times, a security property can be satisfied by

multiple security solutions. The solutions may differ with respect to the amount of protection they

offer, the cost, the resource constraints, and other parameters. In such cases, we demonstrate how

to do a trade-off analysis to identify the security solution that best meets the project goals.

The rest of the chapter is organized as follows. Section 8.1 presents an overview of our aspect-

oriented risk-driven methodology. Section 8.2 discusses in details our security analysis and trade-

off analysis techniques. Section 8.3 illustrates our approach using an example e-commerce appli-

cation. Section 8.4 concludes our paper with a pointer towards future directions.

8.1 Aspect-Oriented Risk-Driven Development Methodology

Pervasive computing applications are exceedingly complex. Complex software is not designed

as a monolithic unit, but it is decomposed into modules on the basis of functionality. Security

concerns are not confined to one module of the application but impact its multiple components.

Thus, security solutions used for thwarting these attacks must be consistently applied across these

various components. We advocate the use of aspect-oriented methodologies for designing secure

pervasive computing application. Aspect-oriented methodologies provide a modular approach to

87

developing and reasoning of such cross-cutting features that impact multiple components.

We use the Unified Modeling Language (UML) to specify our models as it is the de facto

software specification language used in the industry. Specifically, we represent our models using

UML 2.0 [34]. The models typically consist of both static class diagrams and dynamic behavior

diagrams. We demonstrate dynamic behavior specified as sequence diagrams, but these diagrams

are not a requirement of the techniques we use. We find that sequence diagrams are especially

convenient when dealing with behavior such as security protocols, and since our examples use

such protocols we have chosen to utilize sequences in our modeling and analyses.

Our aspect-oriented methodology is composed of several steps. The process starts with system

architects and designers creating models that describe the functionality of the system. We refer

to these functional models as primary models. Note that, the primary models describe just the

functionality of the system - the security mechanisms have not yet been incorporated into these

models.

Once we have an initial functional design, designers must perform a risk assessment of the

application. During this process, the system stakeholders (e.g. end users, designers, developers,

and management) identify sensitive system assets which can be targeted by attackers. Different

stakeholders can place different values on an asset, so the stakeholder and the value they assign to a

particular asset are both needed in our methodology. Designers must develop security requirements

for these assets and identify threats against them, with the aid of security standards such as ISO

14508: Common Criteria [19] and ISO/1EC 13335-5: Guidelines for Management of IT Security

[21]. Designers and security experts must also rank the threats. Designers also identify potential

security solutions that can mitigate specific risks, as part of the assessment process.

We model the attacks as aspects as they are not confined to one module of the application.

Similarly, security solutions are also modeled as aspects. Aspects make it easier for designers to

understand, manage and change these models separately. Since models are developed separately,

a library of reusable attack and security solution models is feasible. Our work uses two types of

aspects. & generic aspect is reusable across applications and it can be thought of as a template that

must be instantiated. It is specified using parameterized notations. We instantiate a generic aspect

by binding its parameters to elements in the primary model to create a context-specific aspect.

We compose context-specific aspects with primary models to create design models in which the

aspect has been integrated. In order for composition to produce a meaningful model, the models

being composed must be specified at similar levels of abstraction. However, we do not require any

particular level of abstraction in our techniques and tools. Therefore, designers can compose and

analyze a set of models at different levels of abstraction to produce different kinds of information,

depending on the amount of detail available at a particular point in the design cycle.

The composition of primary model with the different aspects yield different types of models.

We compose an attack model with a primary model to create what we term a misuse model. The

analysis of a misuse model reveals the extent to which the primary model may be compromised

through application of a successful attack. Composing a security mechanism with a primary model

yields a security-treated model. A security-treated model represents a system in which some se-

curity solution has been incorporated into the primary model. In a similar fashion, composing an

attack model with a security-treated model yields a security-treated misuse model. Analysis of

security-treated misuse model reveals the efficacy of the security solution in protecting against the

given attack.

Often times, multiple security solutions may protect against a given attack. In such cases,

we need to evaluate which solution best meets the project and security goals. It may be difficult

for a designer to determine how different parts of the system, designed to meet different goals,

interact with each other. Performing security analysis in the context of the whole system can help

a designer understand these interactions better. Performing trade-off analysis can help a designer

make informed choices when faced with multiple designs that mitigate security threats equally

well. AORDD trade-off analysis allows designers to analyze various security design solutions

against properties such as required security levels, and project constraints such as time-to-market,

budget, and resource constraints at the same time, in a single trade-off analysis.

8.2 AORDD Analysis

We approach analysis in AORDD in two steps. First, we perform a formal security analysis to give

assurance that the system, created by integrating a security solution model, is indeed resilient to

the targeted attack. We transform a UML misuse model into Alloy and use the Alloy Analyzer

[25] to reason about its security properties. The results of the analysis either give assurance that

the security properties exist, or show that they do not. The second step in AORDD analysis is

to compute a BBN trade-off analysis network. BBN is a powerful technique for reasoning under

uncertainty, using disparate information [16]. Input to the BBN consists of the evidence from the

security analysis, risk information from other AORDD steps, and trade-off parameters. The trade-

off analysis computes a fitness score, showing how well the proposed security solution meets the

project goals. However, project-specific goals are rarely static over the course of system develop-

ment, so our BBN topology allows designers to easily change parameters and priorities in real time

as they explore candidate security solutions.

Figure 8.1 shows an UML activity diagram that describes the steps in an iteration of AORDD

analysis. The solid circle and outlined solid circle represent the initial and final states (respectively)

of an AORDD analysis. Ovals are activities (four in this diagram), and rectangles are objects

produced or consumed during the activity. Solid arrows show control flow while dashed arrows

show flow of objects among activities. The dashed arrow into the Security Solution Treatment

Level parameters object indicates that information from Analyzer results is needed by it. The first

89

t»tua»Uo<M'.UMt««k

KM ACMtOI I • »VM-.r.:.v

•~ rt, r.t.. : . ,t-w-ni-,«. , MMtM. ;;s "I .

Figure 8.1: Steps in AORDD security and trade-off analysis

three activities produce an evaluation of the security provided by a security solution to protect

against a successful attack. The fourth activity results in a fitness score for the security solution,

with respect to security and other trade-off parameters.

Based on the results of the security evaluation, a designer may decide to iterate the security

analysis steps with a different security solution prior to performing any trade-off analysis. Simi-

larly, based on the fitness score, a designer might decide to iterate the trade-off analysis, changing

the priority of trade-off parameters, or relaxing some of them. In practice, security acceptance cri-

teria are often relaxed in the face of budget and/or time-to-market constraints. Relaxing constraints

can have a great effect on fitness score.

8.2.1 Security Analysis

We use the UML2Alloy tool to transform a UML model into Alloy. Its input consists of a UML

class diagram in XML Metadata Interchange (XMI) format [35], and an accompanying OCL [37]

specification of behavior. We therefore begin with the Abstract & Transform activity as the first

activity in AORDD analysis. This activity takes as input a UML misuse model that a user creates

by composing an attack model with either a system model or a security-treated system model.

A designer must abstract the misuse model to only include elements associated with testing the

security properties of interest. We use a UML CASE tool, ArgoUML [3], to create the UML class

diagram and OCL specification. ArgoUML, like most UML tools, allows us to export the model

in XMI format.

The next activity, Create Alloy Model using UML2Alloy, applies UML2Alloy to the XMI

representation. UML2Alloy implements transformation rules to create an Alloy model [1, 2]. This

model is input to the next activity. Analyze with Alloy Analyzer. The Alloy Analyzer searches the

state space exhaustively on all possible valid instances of the model, up to the user-specified scope,

for a counterexample. The output from the analyzer must be interpreted by a human, and be input

into the BBN topology via computer assistance. If a counterexample is produced, the input to the

BBN should reflect that the security solution does not provide adequate protection. Otherwise,

the input represents the analysis assurance that the security solution included in the misuse model

90

provides protection against the attack.

8.2.2 Trade-Off Analysis

Our trade-off analysis BBN topology consists of multiple sub-networks that relate to a security

solution and to security analysis. This is because a simple security analysis output is not sufficient

for a designer to determine whether a security solution is adequate. Analysis either proves a partic-

ular successful attack path (misuse) to be executable, or provides evidence that it is not executable.

However, the existence of an attack path does not imply that the attack will actually happen. It

means that there exists a possibility of an attack. A successful attack depends on other factors,

such as the likelihood or frequency of the attack, and the mean time and effort needed to launch a

successful attack. These latter characteristics in turn depend on the skills, motivation and resources

of the attacker [20]. Our trade-off analysis takes these characteristics into consideration, along with

the impact of a successful attack on the value of system assets. We also include the project-specific

consequence of incorporating a security solution to prevent the attack, such as development cost

and time, in the form of variables.

Our trade-off topology consists of four sub-networks. The subnets are shown as object inputs to

Perform Trade-Off Analysis using BBN Computation activity in Figure 8.1. The information cate-

gories represented by the trade-off subnets are the static security level variables (SSLE), risk level

variables (RL), the security solution treatment level variables (SSTL), and the trade-off parameters

(TOP).

The SSLE variables represent information regarding the criticality of the system assets, along

with stakeholder asset value information, that system designers obtain from the risk assessment

process. The RL variables represent information regarding identified security risks. Designers ob-

tain part of this information during risk assessment, and part through security analysis of an initial

system misuse model. Recall that risk assessment is a required step of the AORDD methodology

that must be performed prior to any analysis.

SSTL variables represent information relevant for measuring the abilities of a security solution

to prevent the attack, along with development and maintenance costs. Again, designers obtain part

of this information through security analysis, and part from the risk assessment process. The TOP

variables consist of relevant project goals and their relative priorities. This information comes from

various project stakeholders and decision makers. The trade-off parameters are used to compute a

fitness score that reflects the ability of the security solution to meet the set of trade-off goals.

We use the Hugin tool [18] to specify and compute the trade-off topology. We present BBN

diagrams and computations in this paper using output from this tool. Figure 8.2 shows a Hugin

representation of the top-level portion of the topology. Each oval section of the topology is a sub-

network. The topology computes a decision variable Fitness Score (rectangle with thick border)

for a security solution using four subnets (ovals with dotted and thick outlines). Subnet values and

91

"^ ta

T
I t.u. 1

Figure 8.2: Trade-off analysis using BBN
■

a decision variable utility (diamond) are used to compute the score.

8.3 Example E-Commerce Application

We applied our proposed approach on an example e-commerce platform called ACTIVE. ACTIVE

provides services for electronic purchasing of goods over the Internet [13]. The 1ST EU-project

CORAS [47] performed three risk assessments of ACTIVE in the period 2000-2003. The risk

assessment performed by the 1ST EU-project CORAS demonstrated that the ACTIVE login service

is vulnerable to man-in-the-middle attack, which allows an attacker to intercept information that

may be confidential. The man-in-the-middle attack may be passive or active. During a passive

attack, the attacker eavesdrops on the message flow between a requestor and authenticator. By

contrast, an attacker participates in the communication during an active attack: changing, deleting,

or inserting messages between the requestor and authenticator.

8.3.1 Identifying Threats to the E-Commerce Application

In order to understand the impact a man-in-the-middle attack has on the e-commerce login service,

we need to generate a misuse model. The misuse model is obtained by composing the primary

model with the man-in-the-middle attack. Figure 8.3 shows portions of a primary model and a

generic aspect, in the form of sequence diagrams. The generic attack model in Figures 8.3(b)

and (c) specify a passive attack; messages pass through the attacker, but are not changed prior to

forwarding.

The portion of a primary model in part (a) of Figure 8.3 shows two classes, ActiveClient and

Login Manager. A message is sent from ActiveClient to execute the requestLoginPage method in

LoginManager. The result of this operation returns a loginPage message to ActiveClient. Active-

Client then executes an internal method, ProcessPage. A portion of a generic man-in-the-middle

attack aspect model is shown in parts (b) and (c) of Figure 8.3. There are three classes, \Sender,

\Attacker, and [Receiver. The | symbol at the beginning of any name in the generic aspect model

92

i— \m
raquMtLogtfiPag« ()

Proc«MPag*0

|m«thodCaN ()

i'<T-'v

Kn*hodCjrt()

|r«p»y
X

m

Figure 8.3: (a): Primary model, (b) and (c): generic man-in-the-middle aspect

MMflM MM! IN kMH

r>qiMMtLogmPagot)

1
X*

lopnPag«

X
m

MHttM ,v' • " - .;" "i ■-•

•c :, Ml M -Kir,.-, ■

toginPage

Ptoc—Ptqmt) (o)

Figure 8.4: (a), (b): Context-specific man-in-the-middle, (c): composed model

serves as an indicator that this element is a parameter that can be bound to elements in the primary

model that are of the same UML type, prior to model composition. The generic aspect (b) shows

a message to execute a method called \methodCall to be sent to \Attacker, and from \Attacker

to {Receiver. There is a response, \reply that is sent back. Part (c) shows behavior that is not

allowed (indicated by an X mark), that is, some message or reply going directly between \Sender

and \Receiver. Our composition techniques allow us to specify such elements that will be removed

prior to composition if they exist.

We specify bindings of generic aspect parameters to primary model elements of the same type,

then instantiate the aspect to create a context-specific aspect model, which we compose with the

primary model. For example, using the models in Figure 8.3, we can specify that \Sender should

be bound to ActiveClient, \Receiver should be bound to LoginManager, \methodCall should be

bound to request LoginPage, and \reply to loginPage. There is no corresponding primary model

element to \Att acker, so our tools automatically create a binding from \Attacker to Attacker. The

context-specific attack model is shown in Figures 8.4(a) and (b).

The context-specific attack model is then composed with primary model using our model com-

position techniques [] to generate the misuse model. Portion of the misuse model appears in Figure

8.4(c). The analysis of the misuse model indicates that the man-in-the-middle attack is indeed pos-

sible in the ACTIVE system.

93

8.3.2 Incorporating Security Mechanisms in the Application

In order to protect against the man-in-the-middle attack, we considered two security solutions.

The first solution is Secure Remote Password (SRP) [56], and the second one is Secure Sockets

Layer (SSL) [55]. SSL is an authentication mechanism often used in web applications, and is part

of commonly available web clients. It operates just above a reliable transport layer (e.g. TCP).

SRP is an alternative mechanism that is not generally available at lower levels of communication,

and must be added at the application level. Both mechanisms provide user authentication, data

confidentiality, and data integrity. SSL is often used to authenticate a server to a client, and can

also be used to authenticate a client to a server, while SRP always authenticates both parties to

each other. Confidentiality is provided through symmetric key encryption in both mechanisms.

SSL provides additional integrity through the use of hashed message digests, while SRP relies on

encryption to provide integrity.

We incorporated SRP into the ACTIVE e-commerce system. The security treated system must

now be analyzed. Specifically, we checked whether the security treated system is prone to man-

in-the-middle attacks. We generated the misuse model for the SRP treated system by composing

the context-specific man-in-the-middle attack with the SRP treated e-commerce system. We then

analyzed the misuse model to check for the possibility of attacks. The analysis involved several

steps. First, we pruned the security treated model to remove the parts that were not pertinent to

the analysis. Note that, all the models we have discussed so far including the abstracted model are

represented in UML and OCL. To automate the analysis, we converted the abstract security treated

misuse model into Alloy using UML2Alloy tool. The security properties that needed verification

in the security treated misuse model were formalized in OCL, which were converted into Alloy

assertions by the UML2Alloy tool. The Alloy Analyzer did not find any property violation, so

no counterexample was produced for a scope of 20. This proved that incorporating SRP into

ACTIVE helped protect it against man-in-the-middle attack. We applied the same approach on

SSL. However, in this case, our analysis produced a counterexample, showing that the SSL security

treated model is not effective in protecting against active man-in-the middle attacks. However, it

is resilient against passive man-in-the-middle attacks.

8.3.3 Trade-Off Analysis of the Security Mechanisms

After completing the security analysis, we now turn our attention to trade-off analysis. The inputs

to our trade-off analysis are the various subnets, static security level variables (SSLE), risk level

variables (RL), security solution treatment level variables (SSTL), and the trade-off parameters

(TOP), as shown in Figure 8.2.

94

Static Security Level (SSLE) Subnet

SSLE represents stakeholders' assessment of the value of system assets. There are always multi-

ple stakeholders' viewpoints regarding system asset value, so the SSLE subnet topology includes

variables that apply relative weight to a stakeholderäÄZs assessment. The stakeholdersäÄZ assess-

ment of asset value and the stakeholders' weight are the observable nodes in the subnet. A decision

node that represents the computation and its accompanying utility node, determines the influence

of each stakeholder on the outcome of the subnet. For our example, the subnet computation leads

to an SSLE value of high.

Risk Level (RL) Subnet

RL subnet incorporates the risks present in the initial design. All nodes are stochastic and are : (i)

the average effort an attacker must use to launch a successful attack (METM), (ii) the mean time

it takes for an attacker to launch an attack (MTTM), (iii) how often an attack will occur (MF), and

(i\ | the impact of an attack (MI). We derive the value for the risk variables MTTM, METM and

MF directly from the result of the Alloy security analysis performed on the initial misuse model.

The security analysis produced a counterexample for the passive man-in-the-middle attack, which

is a simple attack, and one that requires little time or effort on the part of the attacker. The variable

values we use, based on these results lead to an RL subnet computation distribution of RL.low =

0.1, RL.medium = 0.7, and RL.high = 0.2. This probability distribution function indicates that the

risk level of the initial design is most likely medium.

Security Solution Treatment Level (SSTL) Subnet

The SSTL subnet contains variables relating to a security solution and how well it protects target

assets. The SSTL subnet variables include the extent to which the solution provides security prop-

erties, its effect on Risk Level (RL) subnet variables METM, MTTM, MF and Ml, and its cost.

We model the cost as a subnet that combines implementation cost, maintenance cost and time to

implement.

The security analysis did not produce a counterexample for the SRP security-treated misuse

model. In the analysis we used a scope of 20, which for our example gives strong evidence that

SRP protects the ACTIVE login sequence against active man-in-the-middle attacks. These results

mean that the security effect (SE) is verified as being high and hence the variables SE on METM,

SE on MTTM, SE on MI, and SE on MF, are all high. We define the cost of SRP as medium,

because the code is not shipped with web clients as part of browsers, and thus it must be added

to both clients and servers at the application level. The resulting computation is the following

probability density function (pdf) for the target variable SSTL treatment level: SSTL.low = 0.0,

95

SSTL.medium = 0.50, and SSTL.high = 0.50. The interpretation of this pdf is that it is just as

likely that the treatment level is medium as high and the treatment level will never will be low.

The Alloy Analyzer security analysis of the SSL security-treated misuse model did produce

a counterexample for an active man-in-the-middle attack. The counterexample demonstrates an

attack that does not require more than medium attacker skill, little resources and time, so the

solution effect is modeled as low. These results mean that all variables related to the effect of

the security solution on an active man-in-the-middle attack are set to low (SE on METM, SE on

MTTM, SE on MF, and SE on MI). We define the cost of SSL as low since the code is shipped

with web clients as part of browsers.

For the passive version of the attack, the Alloy Analyzer did not produce a counterexample,

so we infer that the SSL protocol preserves the security properties under this particular attack. Its

effect on the risk variables MI, MF, METM, and MTTM is therefore high. This is in contrast to the

active attack, where the security analysis showed that all variables are in the low state. The SSTL

subnet is configured such that if all security effect variables are in the low state, both the solution

effect and the resulting treatment level are in the low state, independent of the cost.

Trade-Off Parameters (TOP) Subnet

We identify three trade-off parameters of interest, namely, security acceptance criteria (SAC), time-

to-market (TTM), and budget constraints. Since we need to produce a product in a small time, we

define a value short for TTM. Our limited resource for incorporating a security solution to prevent

man-in-the-middle attacks necessitates that we define a value of medium for budget. The SAC

variable is actually an input node that receives input from an associated subnet which contains a

node for each of the seven security possible security properties, namely, confidentiality, authentic-

ity, integrity, accountability, availability, non-repudiation, and reliability. In our example, the first

three security properties are equally relevant and the corresponding nodes are marked in the high

state. The other properties are not applicable and are marked with NA.

We can also specify priorities which the designer can adjust when it is not possible to meet all

the initial constraints. In our example, the following priorities are assigned: first priority is given

to TTM, second priority is given to security requirements and third priority is given to budget. The

priorities can be changed at any point of time and the analysis repeated.

Comparing SRP and SSL Security Solutions - Fitness Score

The Hugin tool computes each subnet, using all evidence entered into the topology, and propagates

the results into the respective observable nodes in the top-level fitness score network, shown in

Figure 8.2. The fitness score utility function uses a ranked-weight schema. Higher priority trade-

off parameters are ranked with higher fitness scores so that factors other than security can be taken

96

into account when deciding between alternative security solution designs. This schema also gives

us the ability to easily change the importance of a trade-off parameter if project circumstances

change and we need to put more emphasis on meeting a different project goal. The fitness score

is thus a measure of the degree that a particular security solution meets the security, development,

project and financial constraints of the project (specified in the TOP subnet).

The fitness score for the SRP security solution tells us that when the priorities are TTM, SAC

and budget, the fitness of SRP in mitigating an active man-in-the-middle attack is more than 3

tunes more likely to be high than low and 1.6 times more likely to be high than medium (16% for

low, 32% for medium, and 52% for high). Note that these results do not mean that the fitness score

is high 52 times out of 100, but that our belief is that it will be high more than half the time within

a particular time frame.

We compute the fitness score for SSL by changing the Security Solution Treatment Level

(SSTL) variables in the top-level network in the BBN topology. The computation produces a

fitness score of 23% for low, 23% for medium, and 54% for high for SSL in the presence of an ac-

tive man-in-the-middle attack. For a passive man-in-the-middle attack, the result changes slightly

and becomes 12% for low, 35% for medium, and 53% for high.

The above results imply that the fitness scores for SRP and SSL with the current trade-off

parameter priorities differ by a small measure, so either one can be chosen. However, the situation

changes if the priority of the trade-off parameters changes. If all emphasis is put on security

requirements, meaning that the trade-off parameter SAC is given a priority of 100man-in-the-

middle attack are taken into consideration, the fitness score changes to 20% for low, 75% for

medium, and 5% for high for SRP and 0% for low, 90% for medium, and 10% for high for SSL.

These results make sense, as the treatment level of SRP is higher than that of SSL in the context of

the active man-in-the-middle attack. The fitness score is, however, still not completely in favor of

SRP for two reasons. First, SRP involves a higher cost and time to market than SSL. Second, the

risk level of the man-in-the-middle attack is most likely medium. SSL has a low treatment level for

active attacks, but never a low treatment level in the context of passive man-in-the-middle attacks.

For this the reason the fitness score of SSL turns out to be heavily ranked towards medium when

both attack types are taken into consideration.

8.4 Conclusion and Future Work

Ad-hoc approaches for developing secure systems may result in security breaches. We propose an

AORDD methodology for designing secure systems. The first step is to perform a risk assessment

to identify the attacks on the system and evaluate how the assets of the system can be compromised.

In order to protect against these attacks, security solutions must be methodically incorporated into

the system. The resulting system is then formally evaluated to give assurance that it is indeed

97

secure. Multiple security solutions are often effective in protecting against a given attack, so
designers must identify and integrate the one that is most suitable for the application.

In this work, we focussed the case for a single attack. However, in reality, there are multiple
attacks and multiple security solutions must be incorporated. Moreover, incorporating a security
solution should not open up new vulnerabilities. Designers can continually augment system de-
signs by composing additional security solutions to mitigate additional attacks. They can then
compose multiple attack models with these system models, and analyze them with the Alloy Ana-
lyzer. However, this approach can be cumbersome for designers, so we hope to provide an easier
approach for handling multiple attacks. In this respect, we are currently investigating techniques
that formalize the dependencies between the different types of attacks and security solutions. Such
formalization will allow us to group attacks and security solutions. This, in turn, will facilitate
minimizing the time required for security analysis.

98

Chapter 9

Conclusion

Pervasive computing applications have some unique constraints that preclude the use of traditional

security policies and mechanisms for protecting such applications. We investigated the security

requirements of pervasive computing applications and proposed several solutions. Our first contri-

bution is proposing new access control models that use contextual information, namely, location

and time, to provide access control. The model has several features which may interact in subtle

ways. We showed how such a model can be used for real-world application and analyzed to ensure

that access control breaches do not occur. We also provided a graph-theoretic semantics that helps

the user in visualizing the policies and allows the use of graph algorithms to detect problems with

the specification.

Pervasive computing applications often involve interaction among entities not all of whom

are trusted to the same extent. We proposed a formal model of trust, based on subjective logic,

that allows one to argue about the trustworthiness of entities. The model is also able to quantify

uncertainty with respect to trust, which is inherent in pervasive computing applications. We also

demonstrated how the trust model can be used to make access control decisions and how to transmit

data reliably through a sensor network.

Pervasive computing applications typically collect contextual information, some of which is

sensitive in nature. Towards this end, we proposed new models that allow for controlled data

dissemination. Specifically, we proposed new algorithms for preserving location privacy and we

also developed metrics with which to compare different privacy algorithms. Data availability also

plays an important part in pervasive applications. We proposed techniques using which data can

be efficiently obtained in pervasive computing applications.

Pervasive computing applications operate in a heterogeneous environment where all the nodes

in the network may not have the same computation and communication capabilities. We showed

how to calculate the risk in such environments. We also demonstrated how to do optimal security

provisioning when all attacks cannot be prevented due to resource constraints.

Security cannot be added as an afterthought to pervasive computing applications. Security

99

issues must be addressed at the design phase. We showed how aspect-oriented risk-driven method-

ology can be used for designing pervasive computing applications, how can we get assurance that

such a design is correct, and how do we do trade-off among various security properties when all

properties cannot be satisfied due to various constraints.

This report highlights the major contributions of the project. Some of the results have not been

included in this report to save space, though they have briefly mentioned in passing. These can be

found in our publications, the complete list of which has been included in the report.

The project has helped us identify a number of open research problems that we plan to address

in future projects. Our future work involves identifying, formalizing, and quantifying each security

attribute (confidentiality, integrity, availability, non-repudiation, etc.) in pervasive computing

applications. This involves understanding each attribute, identifying the invariant properties of

these attributes, and the relationship among the attributes. We also plan to understand security

solutions in more details. For instance, we need to know what attributes are ensured by each

solution and to what extent. We also need to investigate composability properties of security

solutions. For example, it is possible that a security mechanism preserves some attribute when

used in isolation, but may not do so when used in conjunction with another security solution. We

plan to formalize vulnerabilities and attacks and understand how attacks impact the attributes. An

attack is possible if some invariant property of a security attribute is destroyed. Enumerating all

possible ways in which such invariant properties can be destroyed will allow us to predict future

attacks as well. Once the inherent properties of attributes, attacks, and solutions are understood,

we can provide better protection against known and unknown attacks.

100

Bibliography

[1] K. Anastasakis, B. Bordbar, G. Georg, and I. Ray. UML2Alloy: A Challenging Model Trans-

formation. In Proceedings of the I Oth International Conference on Model Driven Engineer-

ing Languages and Systems, volume 4735 of Lecture Notes in Computer Science, pages 436-

450, Nashville, TN, U.S.A., September 2007.

[2] K. Anastasakis, B. Bordbar, G. Georg, and 1. Ray. On Challenges of Model Transformation

from UML to Alloy. Software and Systems Modeling, 9(1):69 - 86, January 2010.

[3] ArgoUML. ArgoUML website, 2009. http://argouml.tigris.org [cited September

2010].

[4] E. Bertino, R A. Bonatti, and E. Ferrari. TRBAC: A Temporal Role-Based Access Control

Model. In Proceedings of the 5th ACM Workshop on Role-Based Access Control, pages

21-30, Berlin, Germany, July 2000.

[5] C. Bettini, X.S. Wang, and S. Jajodia. Protecting Privacy Against Location-Based Personal

Identification. In Proceedings of the 2nd VLDB Workshop on Secure Data Management,

volume 3674 of Lecture Notes in Computer Science, pages 185-199, Trondheim, Norway,

2005.

[6] S. A. Butler. Security Attribute Evaluation Method: A Cost-Benefit Approach. In Proceed-

ings of the 24th International Conference on Software Engineering, pages 232-240, Orlando,

FL, U.S.A., May 2002.

[7] S. A. Butler and P. Fischbeck. Multi-attribute Risk Assessment. In Proceedings of the Sympo-

sium on Requirements Engineering For Information Security, Raleigh, NC, U.S.A., October

2002.

[8] L. Chen and J. Crampton. On Spatio-Temporal Constraints and Inheritance in Role-Based

Access Control. In Proceedings of the ACM Symposium on Information, Computer and Com-

munications Security, pages 205-216, Tokyo, Japan, March 2008.

101

[9] R. Dewri, N. Poolsappasit, I. Ray, and D. Whitley. Optimal Security Hardening Using Multi-

objective Optimization on Attack Tree Models of Networks. In Proceedings of the 14th ACM

Conference on Computer and Communications Security, pages 204—213, Alexandria, VA,

USA, October-November 2007.

[10] R. Dewri, I. Ray, N. Poolsappasit, and D. Whitley. Optimal Security Hardening on Attack

Tree Models of Networks: A Cost-Benefit Analysis. International Journal of Information

Security, Under review.

[11] R. Dewri, I. Ray, I. Ray, and D. Whitley. Security Provisioning in Pervasive Environments

Using Multi-objective Optimization. In Proceedings of the 13th European Symposwm on

Research in Computer Security, number 5283 in Lecture Notes in Computer Science, pages

349-363, Malaga, Spain, October 2008.

[12] R. Dewri, I. Ray, I. Ray, and D. Whitley. On the Formation of Historically k-Anonymous

Anonymity Sets in a Continuous LBS. In Proceedings of the 6th International ICST Confer-

ence on Security and Privacy in Communication Networks, volume 50 of Lecture Notes of

the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineer-

ing, Singapore, September 2010.

[13] T. Dimitrakos, B. Ritchie, D. Raptis, J. 0. Aagedal, F. d. Braber, K. Stolen, and S. H. Houmb.

Integrating Model-based Security Risk Management into eBusiness Systems Development:

The CORAS Approach. In Proceedings of the 2nd IFIP Conference on E-Commerce, E-

Business, E-Government, pages 159-175, Lisbon, Portugal, 2002.

[14] B. Gedik and L. Liu. Protecting Location Privacy with Personalized k-Anonymity: Architec-

ture and Algorithms. IEEE Transactions on Mobile Computing, 7(1): 1 - 18, January 2008.

[15] G. Georg, J. Bieman, and R. B. France. Using Alloy and UML/OCL to Specify Run-Time

Configuration Management: A Case Study. In Proceedings of the Workshop ofpUML, vol-

ume 7 of LNI, pages 128-141, October 2001.

[16] B. A. Gran. The Use of Bayesian Belief Networks for Combining Disparate Sources of In-

formation in the Safety Assessment of Software Based System. Technical report, Norwegian

University of Science and Technology, Trondheim, Norway, 2002.

[17] M. Gruteser and D. Grunwald. Anonymous Usage of Location-Based Services Through

Spatial and Temporal Cloaking. In Proceedings of the 1st International Conference on Mobile

Systems, Applications, and Services, pages 31^42, San Francisco, CA, 2003.

[18] HUGDM. Hugin Expert A/S, 2007.

102

[19] ISO 14508. Common Criteria for Information Technology Security Evaluation Version 3.1

Revision 2, 2007.

[20] ISO 14508-4. Common Methodology for Information Technology Security Evaluation Ver-

sion 3.1 Revision 2, 2007.

[21] ISO/IEC 13335-5. Information Technology - Guidelines for Management of IT Security,

2001.

[22] D. Jackson. Automating First-Order Relational Logic. In Proceedings of the 8th ACMSIG-

SOFT Symposium on Foundations of Software Engineering, pages 130-139, San Diego, CA,

U.S.A., November 2000.

[23] D. Jackson. Micromodels of Software: Lightweight Modelling and Analysis with Alloy,

2002. http://alloy.mit.edu/alloy2website/reference-manual.pdf [cited Septem-

ber 2010].

[24] D. Jackson. Alloy 3.0 Reference Manual, 2004. http://alloy.mit.edu/

reference-manual .pdf [cited September 2010].

[25] D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, Cambridge,

MA, U.S.A, 2006.

[26] A. Josang. Artificial Reasoning with Subjective Logic. In Proceedings of the 2nd Australian

Workshop on Commonsense Reasoning, Perth, Australia, December 1997.

[27] A. Josang. A Logic for Uncertain Probabilities. International journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems, 9(3):279-311, June 2001.

[28] A. Josang, E. Gray, and M. Kinateder. Simplification and Analysis of Transitive Trust Net-

works. Web Intelligence and Agent Systems Journal, 4(2): 139-161, 2006.

[29] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A Generalized Temporal Role-Based Ac-

cess Control Model. IEEE Transactions on Knowledge and Data Engineering, 17(l):4-23,

January 2005.

[30] X. Liu and G. Schrack. Encoding and Decoding the Hubert Order. Software Practice and

Experience, 26(12): 1335 - 1346, December 1996.

[31] S. Mascetti, C. Bettini, X. S. Wang, D. Freni, and S. Jajodia. ProvidentHider: An Algo-

rithm to Preserve Historical k-Anonymity in LBS. In Proceedings of the 10th International

Conference on Mobile Data Management, pages 172-181, Taipei, Taiwan, May 2009.

103

[32] J. Nash. Non-Cooperative Games. The Annals of Mathematics, 54(2), 1950.

[33] OMG. Unified Modeling Language: Superstructure. Version 2.0. Document id: formal/05-

07-04, http://www.omg.org.

[34] OMG. Unified Modeling Language: Superstructure Version 2.1.2, 2002. Document Id:

formal/07-11-02.

[35] OMG. XML Metadata Interchange Version 2.0, 2005. Document Id: formal/05-05-01.

[36] OMG. Meta Object Facility Core v. 2.0, 2006. Document Id: formal/06-01-01, http://

www.omg.org.

[37] OMG. Object Constraint Language Version 2.0, 2006. Document Id: formal/06-05-01.

http://www.omg.org.

[38] N. Poolsappasit, R. Dewri, and I. Ray. Dynamic Security Risk Management Using Bayesian

Attack Graphs. IEEE Transactions on Dependable and Secure Computing, Under Review.

[39] I. Ray, N. Poolsappasit, and R. Dewri. An Opinion Model for Evaluating Malicious Activities

in Pervasive Computing Systems. In Proceedings of the 22nd Annual IFIP WG 11.3 Working

Conference on Data and Applications Security, volume 5094 of Lecture Notes in Computer

Science, pages 297-312, London, U.K., 2008.

[40] I. Ray, I. Ray, and S. Chakraborty. An Interoperable Context-Sensitive Model of Trust. Jour-

nal of Intelligent Information Systems, 32(1), 2009.

[41] I. Ray, I. Ray, and S. Chakraborty. A Context-Aware Model of Trust for Facilitating Se-

cure Ad Hoc Collaborations. In Z. Yan, editor, Trust Modeling and Management in Digital

Environments: From Social Concept to System Development. IGI Global. 2010.

[42] I. Ray and M. Toahchoodee. A Spatio-temporal Role-Based Access Control Model. In

Proceedings of the 21st Annual IF IP WG 11.3 Working Conference on Data and Applications

Security, pages 211-226, Redondo Beach, U.S.A., July 2007.

[43] I. Ray and M. Toahchoodee. A Spatio-Temporal Access Control Model Supporting Delega-

tion for Pervasive Computing Applications. In Proceedings of the 5th International Confer-

ence on Trust, Privacy & Security in Digital Business, pages 48-58, Turin, Italy, September

2008.

[44] M. Richters. A Precise Approach to Validating UML Models and OCL Constraints. PhD

thesis, Universitaet Bremen, 2002. Logos Verlag, Berlin, BISS Monographs, No. 14.

104

[45] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control

models. IEEE Computer, 29(2):38-47, February 1996.

[46] R. Simon and M. E. Zurko. Separation of Duty in Role-based Environments. In Proceedings

of the I Oth Computer Security Foundations Workshop, pages 183-194, Rockport, MA. USA,

June 1997.

[47] K. Stolen, F. d. Braber, R. Fredriksen, B. A. Gran, S. H. Houmb, Y. C. Stamatiou, and J. 0.

Aagedal. Model-based Risk Assessment in a Component-Based Software Engineering Pro-

cess - Using the CORAS Approach to Identify Security Risks. In Business Component-Based

Software Engineering. Springer, 2002.

[48] M. Taghdiri and D. Jackson. A lightweight formal analysis of a multicast key management

scheme. In Formal Techniques for Networked and Distributed Systems - FORTE 2 003,

volume 2767 of Lecture Notes in Computer Science, pages 240-256, 2003.

[49] K. W. Tan, Y. Lin, and K. Mouratidis. Spatial Cloaking Revisited: Distinguishing Information

Leakage from Anonymity. In Proceedings of the 11th International Symposium on Advances

in Spatial and Temporal Databases, volume 5644 of Lecture Notes in Computer Science,

pages 117-134, Aalborg, Denmark, July 2009.

[50] M. Toahchoodee and I. Ray. On the Formal Analysis of a Spatio-Temporal Role-Based Ac-

cess Co ntrol Model. In Proceedings of the 22nd Annual IFIP WG 11.3 Working Conference

on Data and Applications Security, pages 17-32, London, U.K., July 2008.

[51] M. Toahchoodee and I. Ray. Using Alloy to Analyze a Spatio-Temporal Access Control

Model S upporting Delegation. 1 ET Information Security, 3(3):75 - 127, September 2009.

[52] M. Toahchoodee and I. Ray. On the Formalization and Analysis of a Spatio-Temporal Role-

Based Access Control Model. Journal of Computer Security, 2010. To appear.

[53] M. Toahchoodee, I. Ray, K. Anastasakis, G. Georg, and B. Bordbar. Ensuring Spatio-

Temporal Access Control for Real-World Applications. In Proceedings of the 14th ACM

Symposium on Access Control Models and Technologies, pages 13-22, Stresa, Italy, June
2009.

[54] M. Toahchoodee, I. Ray, and R. M. McConnell. Using Graph Theory to Represent a Spatio-

Temporal Role-Based Access Control Model. International Journal of Next Generation Com-

puting. Under Review.

[55] Transport Layer Security Working Group. SSL 3.0 Specification, 1996.

105

[56] T. D. Wu. The Secure Remote Password Protocol. In Proceedings of the Network and

Distributed System Security Symposium. San Diego, CA, USA, 1998.

[57] J. Zao, H. Wee, J. Chu. and D. Jackson. RBAC Schema Verification Using Lightweight

Formal Model and Constraint Analysis, 2002. http://alloy.mit.edu/publications.

php [cited September 2010].

106

REPORT DOCUMENTATION PAGE

ntMStuüNui ntiurtiM TUUK ruKivi IU i nt ABUVt MUUMtw.

I. KtCUMI UM It

10-10-2010
t. tttrurti i trt

Final Report
j. UAitatuvtrttu

Dec 2006-May 2010
<*. IIILt MNUaUBIIILt

Addressing Security Challenges in Pervasive Computing Applications

oa. UUNIKAUI rvuivmtri

FA 9550-07-1-0042

DO. OMAN I routvitjen

DC. rKUUKAM LLtlVICN I ixurvmtK

o. AUII-IUKIBI

Ray, Indrakshi
Ray, Indrajit

DO. rnujtt i NUIVIBCK

De. i Aar. muiviDtn

DT. WUKIVUIMM rourviotn

/. rtKruKiviiivu UMVJMIMIZ.MI IUIM niMivittai MIMU MUUHtsiicai

Colorado Slate University
Room 408 USC
601 S. Howes Street
Fort Collins CO 80523

o. reKruKiviiivu UKUMNI^M I lurv
KtrUMI IVUIVlotM

». DruraBUKirau'ivturan UWIMü MUCNLT wMivtti&i ANU Muunc&aitai

Dr. Robert Hcrklotz
AFOSR
Suite 325 Room 3112
875 N. Randolph Street
Arlington VA 22203-1768

IU DrUIMäUK/NlUNIlUK a AUKUNTIVUDI

DOD-üSAF-Air Force

I I. BKUIMBUK/IVlUrMI I UK ö KtfUMI

NUMtfOMIM

AfglttE Utopia-n 150
IZ. Ul!> I KIBU I lUN'AVAILABILI IT a I A I CIWtN I

Distribution A: Approved for Public Release

IJ. &UKKLCIV1tr« IMMT NUIti

I**. ABB I KAU I

Pervasive computing provides services that use knowledge about the operating environment. The very knowledge that enables an
application to provide better services may, however, be misused, causing security and privacy breaches. Uncontrolled disclosure of
information or unconstrained interaction among entities may have serious consequences. Traditional security policies and
mechanisms are inadequate because these applications are dynamic and are executed in resource constrained environment. This work
proposed new access control models and trust models for use in pervasive computing applications. The work also investigated risk
management and security provisioning for pervasive environments when limited resources are available. Controlled data
dissemination techniques were also proposed as a part of this work. Finally, the work also discussed methodologies for designing
secure pervasive computing applications.

ID. aUtJJtl.1 I tKIVIB

Pervasive computing, access control models, trust models, secure design, controlled data dissemination

ID. stLumi T ULABBIMUAI iu« ur:

a. KtruKi

Unclassified

O. ABB I KAU I

Unclassified

c. i no rAut

Unclassified

I /. Lirvn i M i lUN ur
MDOI KAU I

SAR

IB. IMUIVlOtK
ur
rAUta

108

i »a. njMivit ur KtaruiMDiDLC rtnsun

Indrakshi Ray
I 3D. I CLtrnUNt NUIVIBCK

1 -970-491-7Q8K

JUD\10\\^[^

